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Abstract

An investigation into the use of neural networks and genetic algorithms for herding animals. Parts
of a previous Robot Sheepdog Project are reimplemented in a modular, object-oriented style in
Java, and new algorithms are considered for controlling the Herder entity in the simulation. A
simple recurrent neural network architecture is implemented, and trained using backpropagation
and genetic algorithms. Backpropagation is found to be difficult to apply effectively to simple
recurrent networks, but some success is achieved with genetic training.
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Chapter 1

Introduction

Never express yourself more clearly than you are able to think.

— Niels Bohr

This project is an investigation into techniques of robotic animal herding. It builds on work
done by the Robot Sheepdog Project, conceived at the Silsoe Research Institute.

For convenience, the term ‘duck’ is used throughout this report for the (simulated) animals
being herded, and ‘dog’ for the simulated entity doing the herding. For the purposes of this
project, it’s not very relevant what the simulated entities represent, since the flocking behaviour
modelled is fairly generic.

1.1 Previous work on the Robot Sheepdog Project

The original goal of the project was to work towards the development of a robot sheepdog and
algorithms for controlling it in order to herd sheep. Through experiments involving a robot and a
flock of ducks, algorithms were developed to model the behaviour of the ducks and to control the
herding robot. Further experiments were conducted entirely with simulations (written in C++)
of the animals, yielding refined algorithms for controlling the ducks and dog. Last year work was
also done on graphical representations of the simulation, but this work is not followed up by this
project.

1.2 Goals of this project

This project had two main goals:

1. To reimplement the simulation (as opposed to display) parts of the previous year’s work,
changing the implementation language from Visual C++ to Java, and adding a Swing GUI.
This is far from being a straight translation: the existing code was written in a fairly non-
modular procedural style. My goal was to produce a well-designed, object-oriented system
with clear interfaces between the main simulation and the simulated animals, making it easy
to experiment with different models for the dog and ducks.

2. To develop new algorithms for controlling the dog, based on neural networks and genetic
algorithms.

Clearly the first goal makes the second a lot easier, and it also provides a convenient framework
for any future work on the project.
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1.3 An overview of the project’s structure

The set-up of the project is loosely modelled on the relationship between a real shepherd, sheepdog
and flock of sheep. The simulation takes place in a circular arena populated by a dog and a number
of ducks. The animals’ control algorithms have full knowledge of the simulation’s state, although
the ducks only react to events in their immediate vicinity. The dog-control algorithm plays the
part not only of the dog, but also of the shepherd. It is therefore assumed to have an overview
both of the arena’s physical layout and of the overall goal being worked towards.

The arena is initialized with a dog position and a set of duck positions. When the simulation
is running, a single step consists of updating the duck positions, followed by the dog position. The
simulation finishes when some goal condition is achieved, usually when the ducks have all been
herded into a specified region.
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Chapter 2

A framework for developing
control algorithms

The height of technical felicity
is to combine sublime simplicity
with just sufficient ingenuities
to show how difficult to do it is

— Piet Hein

2.1 Reimplementation issues in the arena simulation

Previous work on the robot sheepdog project had resulted in a fairly straightforward simulation
architecture: a circular arena, containing a number of Ducks and a Dog. On successive iterations
the dog and duck positions were updated according to the algorithms which had been developed
for their control.

The implementation of this simulation was extremely monolithic: dog control, duck control and
general arena-related code were combined into a single “update” function. This is an undesirable
state of affairs for several reasons:

1. The agglomeration of concerns makes the code difficult to read and maintain (the update
function was over 800 lines long). The use of cut-and-pasted source code rather than func-
tions drastically reduces maintainability.

2. It was also difficult to experiment with different models for the simulated animals, or indeed
for the arena itself.

3. The heavy use of global variables and lack of modularity meant that the algorithms were not
cleanly separated; as a result, it was possible for the control algorithms to “cheat”: making
use of information which would not be apparent in a real situation, or directly manipulating
the simulation’s data structures. It was, for example, possible for a dog-control algorithm
to “teleport” the dog instantaneously from one side of the arena to the other, or to directly
manipulate the ducks’ velocities.

These examples are a little extreme, but one can imagine more subtle, accidental violations of
the simulation’s physics. Although this would have no serious consequences within the scope
of this project, it would be disastrous for anyone attempting to implement the algorithms in
real robots: breaking the laws of physics is a lot easier in a simulation than in real life.1

1As a character states in the mediocre sci-fi horror film Event Horizon, “When you break all the laws of physics,
do you seriously think there won’t be a price?” In this case, the price turned out to be opening “a portal to a
dimension of pure evil” and the gruesome deaths of most of those involved; I do not envisage this happening with
the duck simulation, but it’s better to be safe than sorry.
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2.2 Object-oriented design of the new code

I chose an obvious way to split up the simulation: one object each to represent a dog controller,
a duck controller and a simulation state. Careful design of the interfaces would prevent the duck
and dog controllers from meddling with anything they shouldn’t. All the new code was written in
Java.

2.2.1 Supporting classes

I started by implementing some classes necessary for modelling the movement of the animals:

• Vec is a float-based two-dimensional Cartesian vector class which does everything one would
expect a vector to do. It includes methods for most common vector arithmetic operations,
as well as a clone method. Cloning is important, since only clones of the simulation’s state
are passed to the dog and duck controllers, keeping the real data inviolable. As much “high-
level” functionality (normalization, conversion to polar co-ordinates and so forth) as possible
is delegated to Vec, in order to minimize cloning and increase speed.2

• Pos simply encapsulates two Vecs representing an object’s position and velocity. It also
includes a move() method which adds the velocity to the position. The intention is that,
during simulation, an animal’s position will only be manipulated via the velocity vector and
the move() method, thus ensuring at least slight conformance with the laws of physics.

I considered adding an extra level of realism by only allowing manipulation of accelerations
rather than velocities; this would disallow behaviour such as instantaneous changes of velocity,
and would allow for elegant modelling of collisions: the simulator would simply add an opposing
acceleration representing the reaction force from the object collided with. However, I decided
against this approach for a number of reasons:

1. The existing algorithms only worked in terms of velocities, and had no concept of acceler-
ation. Since I required at least the existing duck model for my work, I would have had to
reimplement and test a new duck-control algorithm using accelerations. This would have
been time-consuming and tangential to the project’s goals.

2. The collision modelling would not be especially useful, since the dog should not be colliding
with walls or ducks anyway.

3. As regards the realism of the simulation, the real robots on which the algorithms had been
tested were fairly small, and moved quite slowly. Thus issues of momentum were unlikely to
become important.

4. I intended to use neural networks with continuous activation functions to control the dog.
Their output would thus be a continuous function of the input and completely instantaneous
changes would be impossible.

2.2.2 The Arena, Duck and Dog objects

Now I could implement the classes comprising the core of the simulation. The central class is
called Arena. It maintains the current state of the simulation and handles the initialization and
update of the animal positions. It provides a large number of methods for reading and setting
animal positions. However, access to these methods is filtered through three control interfaces, all
of which extend a basic CommonControl interface.

• The CommonControl interface allows reading of the current state of the animals in the sim-
ulation, as well as more general parameters such as the arena size.

2Backpropagation and genetic algorithms are both computationally intensive, and Java is not known for its
blistering speed, so speed considerations are important here.
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• The DogControl interface allows, in addition, setting of the dog’s velocity.

• The DuckControl interface allows setting of the duck’s velocity.

• The TrainerControl interface is intended for use with training algorithms which need to set
up particular environments. It gives unrestricted access to dog and duck positions, allowing
them to be manipulated at will.

Read-only access to data is given by cloning the appropriate objects. This introduces a time
overhead, but it is the only effective way to do it in Java. However, the computationally intensive
training process uses an interface which gives direct access to the data structures: the overhead
is only incurred during the normal, real-time running of the simulation, which doesn’t suffer
noticeably from it.

The dog and duck objects in a simulation are both concrete subclasses of the same abstract
class, AnimalModel. This class contains two methods, update() and postUpdate(), which are
called at every step of the simulation, respectively before and after the current velocities are
applied. Note that although the dogs and ducks both implement the same class, they do not have
the same access to the Arena object: the AnimalModel’s constructor is passed a reference to Arena

cast to either a DogControl or a DuckControl as appropriate, and so only gets control of its part
of the simulation.

2.3 Adding a GUI

It’s not much good running a simulation if you can’t see what it’s doing. The next step was to
implement an ArenaView class which would provide a display of the simulation’s current state.
This is a fairly straightforward overhead view implemented in Java2D. Each animal is shown as
a circle, with the magnitude and direction of its velocity shown by a projecting line (see Figure
2.1).

2.4 Tying it all together

The whole simulation is controlled by the DuckSim class. This provides a simple control panel,
maintains references to the arena and animal models, and allows the user to reset and run the
simulation. The simulation is run by starting a separate thread which calls the arena object’s
update function at regular intervals. Figure 2.2 shows an outline UML class diagram of the
ducksim package.
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Figure 2.1: The arena display of the duck simulation, and the control panel.
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Figure 2.2: Simplified UML class diagram of ducksim package. Many attributes and methods are
omitted for clarity.
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Chapter 3

Neural networks for control

I have yet to see any problem, however complicated, which, when you looked at it the
right way, did not become still more complicated.

— Poul Anderson

3.1 Possible network architectures

With a simulation framework in place, the next step was to investigate new algorithms for control.
The aim was to use some form of neural network controller, but this still leaves a bewildering
choice due to the huge variety of network architectures. An extensive survey of neural network
architectures and training algorithms suitable for control systems is given in [HSZG92].

One the best-known types of neural net is the multilayer feedforward perceptron, most usually
trained using backpropagation [RHW86]. A brief description of this method is given in Section
A.1. This was one of the first systems I considered; however, both the architecture and the training
algorithm are, in their usual form, inadequate for this project. The standard feedforward network
cannot be used to model events with temporal structure, since it has no internal memory and the
outputs at any point in time are entirely dependent on the inputs1. It is clear that, no matter
what training algorithm is used, the controller would always produce the same output in the same
situation: it would be impossible for it to develop the higher-level strategies needed to control the
flock.

Backpropagation as a training algorithm also has its drawbacks for this task: with backprop-
agation, a network is trained by presenting it with an input and comparing its outputs with the
desired set of outputs. However, in this situation the desired output is not as clear as in, say, a
pattern-recognition task. Rather, the correctness is measurable only in terms of the effects of the
outputs on the simulation over a period of time. Measuring the “correctness” of a controller is rel-
atively easy, by awarding scores for achieving desirable tasks. Propagating this information back
into the network is harder, although complementary reinforcement backpropagation, discussed in
Section 3.5.1, provides one solution.

Another way to extend backpropagation is discussed in [TW88]: the rest of the simulation
is also implemented as a neural network, and is grafted onto the controller to be trained, the
controller’s output nodes forming the inputs of the rest of the system. Backpropagation is then
applied as usual, but only the weights of the controller are modified. Due to the complexity of
reimplementing the rest of the simulation as a neural net, and the relative paucity of literature on
this technique, I decided against attempting this.

1Actually, time can be modelled by feedforward nets, by representing it as an extra spatial dimension, but there
are severe limitations with this approach (discussed in [Elm90]), making it unsuitable for this project.
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3.2 Simple recurrent networks (SRNs)

The next stage was to investigate recurrent networks – networks containing connections which do
not go strictly forwards from layer to layer. This provides for much more capability in responding
to inputs which vary through time, but makes training more difficult and time-consuming. One
of the best-known techniques for training recurrent nets, backpropagation through time, becomes
very expensive in time and memory when used for longer periods ([RHW86], p. 356).

An architecture which seems to offer many of the benefits of a recurrent network without
sacrificing ease of training is the Simple Recurrent Network used by Jordan ([Jor86]) and Elman
([Elm90]). Although its most common application seems to be in linguistic areas, where it can be
trained to behave like a finite-state automaton, it has also been used for controllers similar to the
one in this project ([Mee96]).

The SRN architecture extends a standard 3-layer feedforward network by adding a layer of
context nodes; a simple example is shown in Figure 3.1. There are as many of these as there are
hidden nodes, and they act as a short-term memory for the hidden layer. Like the input layer, the
context layer has forward connections to the hidden layer and is activated before the hidden layer
during forward propagation. However, the hidden layer also contains one-for-one backlinks to the
context layer (i.e. each hidden node is connected to exactly one context node). These backlinks
have a non-adjustable weight of 1 and the context nodes use an identity activation function; in
other words, the hidden-layer activations are simply copied into the context layer after they have
been calculated. The net effect is that, on every forward-propagation pass, each hidden node is
presented with its own previous activation as one of its inputs. In spite of this seemingly short-term
memory, SRNs have proved capable of developing fairly long behavioural patterns.

The SRN architecture adds another tunable parameter to those already present in a standard
feedforward network: the initial activations of the context nodes. Usually these are reset to some
neutral value, such as 0.5, at the start of every sequence of training patterns. The longer the
network is run for, the less significant these become, so I didn’t investigate the effects of changing
their values.

Output layer

Hidden layer

Input layer Context layer

Recurrent link

Forward link

Figure 3.1: A simple recurrent network with two input nodes, two hidden nodes, and two output
nodes. The recurrent links to the context layer are shown as dotted arrows.

One of the attractive aspects of SRNs is that they can be trained by simple backpropagation;
during the backpropagation phase the context nodes are just treated as another set of input nodes.
Meeden ([Mee96]) investigates two training methods, complementary reinforcement backpropaga-
tion and a genetic algorithm, and I decided to try the same methods for the dog controller. These
methods are described in more detail in Appendix A, and in Sections 3.5.1 and 3.6.1.

3.3 Coupling a neural network to the dog controller

A vital part of the project was the mechanism for actually associating the network’s input and
output values with the motion of the dog: what information to feed in, and how to interpret
the outputs. An obvious first step, both for input and output, was to translate the simulation’s
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Cartesian co-ordinates to polar ones relative to the dog’s current position. Intuitively it seems
simpler to develop control algorithms in terms of directions and distances than in terms of x and
y co-ordinates.

Input encoding A good rule of thumb with neural networks is never to use more neurons than
necessary. Using too large a network needlessly enlarges the space that learning algorithms have
to search, thus increasing training times. It can also cause overfitting to noisy data or to specific
training samples. I decided to experiment with a few carefully selected and preprocessed values as
inputs for the network. I implemented functions to convert positions to a direction and distance
from the dog, both scaled to the range [0, 1]. The most important data were the position of the
nearest point on the wall (vital to avoid colliding with it), the position of the flock centre, and the
radius of the flock. I also considered adding the position of the closest duck, but decided to leave
it out, at least initially.

Output encoding The network only needs to produce two values, controlling the dog’s speed
and direction respectively. However there was still choice as to the exact control method: should
the speed (or angular velocity) be applied directly, or should it be interpreted as an acceleration
and added to the current value? And to what ranges should the outputs be scaled? Again,
experimentation was needed. The results are discussed in Section 4.2.

3.4 Implementing neural networks in Java

The first step was to write a Java package to implement SRNs. In a spirit of modularity, I kept
this completely separate from the ducksim package: the two packages only intersect in the neural
dog-controller class attached to Arena. I called my neural network package neurotic; a UML
class diagram of the final version is shown in Figure 3.2.

There is a lot of choice as to the implementation of neural networks in Java. Much of this is
to do with the tradeoff between speed on the one hand, and clarity and flexibility on the other. A
fast solution would be to store data such as weights and activations in arrays, allowing them to
be accessed quickly by training algorithms. However, this implementation would be quite rigidly
tied to a particular network structure. Because I wanted the freedom to experiment with different
network architectures, and because I didn’t anticipate using networks of more than around a dozen
neurons at most, I thought a slower, more object-oriented approach would be most suitable.2

I made the obvious design choice of creating a Neuron class representing a node in the network.
At first I attempted storing the link data within the nodes themselves, but this quickly became
messy since the data needed to be accessed from both ends of the link. After some experimentation,
I introduced a binary association class Link representing a link between neurons.

Eventually I made Neuron a concrete subclass of an abstract class Axon, which represents
anything that can produce an activation in a network. This encompasses input nodes, “normal”
nodes like Neuron, and the context nodes used in SRNs.

The hard work of creating and running networks of these objects is done by the Net class,
representing an entire neural network. It initializes a feedforward network or SRN based on pa-
rameters passed to the constructor, and provides methods for setting the inputs, running forward-
propagation, and getting the ensuing outputs. The most important methods and inner classes
are:

• Net, the constructor, which creates a new 3-layer network (recurrent or feed-forward) with
the number of nodes in each layer supplied as arguments.

• randomizeWeights(float mean, float range) initializes every trainable weight in the
network to a uniformly distributed random value with the given mean and range.

2The (non-neural) duck controller turned out to be the bottleneck when training (see Section 4.2.2) so this was
probably the right choice.
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• setIn, getIn and getOut are accessor methods for the input and output nodes.

• Activation is a wrapper class around an activation function for the net, and Sigmoid is a
private subclass giving the usual activation function. Since I didn’t intend changing this, it
is currently “hard-wired”, but could easily be altered.

• LinkEnum is a public inner class implementing the Enumeration interface. Instantiating it
gives an enumeration over all the links in the network; it is useful both for Net’s internal
methods and for other classes which might wish to read or modify weights.

• getAllWeights and setAllWeights allow access to all the network’s weights as an array,
and numWeights() returns the number of weights in the network.

• Various methods for training the network by backpropagation, described in Section 3.5.2.

• Various methods for debugging.

Axon

 act: float
 label: String
 outputs: Link[]

 act(): float
 delta(): float
 label(): String
 layer(): int
 addOutput(link:Link)

Neuron
+inputs: Link[]

InputNode

ContextNode
+input: Link

Link
+input: Axon
+output: Axon
+weight: float
+trainable: boolean

1

*

1

*

1

*

Net
 ilyr: InputNode[]
 clyr: ContextNode[]
 hlyr: Neuron[]
 olyr: Neuron[]
+rate: float
+momentum: float
 act: Activation
 float: sumSqError

+Net(in:int,hid:int,out:int,rec:bool)
+randomizeWeights(mean:float,range:float)
+setIn(node:int,value:float)
+getIn(node:int)
+getOut(node:int)
+think()
+train(desired:float[])
+flushContext(f:float)
+sumSqError(): float
+changeWeights()
+resetDeltas()
+numWeights(): int
+setAllWeights(weights:float[])
+getAllWeights(): float[]

*
1

*

1

*

1

*

1

Population
 net: Net
 fitfunc: Fitness
 weights: float[][]
 fitness: float[]
 rnd: Random
 envs: int
 muteRate: float
 currGen: int

+Population(net:Net,fitfunc:Fitness,...:,envs:int)
+Population(net:Net,fitfunc:Fitness,envs:int,r:Reader)
+save(w:Writer)
+popSize()(): int
+getCurrGen(): int
 float(i:int): measureFitness
 tournamentSelect(i:int)
+fittest(): float[]
+evolve(n:int)
+evolve()
 mutate(in:float[],range:float): float[]
 mutate(in:float[],out:float[])

«interface»

Fitness

+initEnviros(n:int)
+score(net:Net,env:int)

Net.Activation

Net.LinkEnum

Figure 3.2: UML class diagram of neurotic package (some fields and methods are omitted for
clarity).

3.5 Training with backpropagation

3.5.1 Complementary reinforcement backpropagation

Complementary reinforcement backpropagation (CRBP), described in [AL90], is a method for
getting around the problem discussed in Section 3.1: the fact that normal backpropagation can

11



only train a network on the basis of its actual outputs, against some other set of desired outputs.
CRBP provides a method for training a network on the basis of a fitness function defined by the
network’s interaction with some wider context.

The principle of CRBP is to extrapolate the network’s actual output vector to produce a
“virtual” target vector against which to perform the usual backpropagation algorithm. In slightly
more detail, the procedure is as follows:

1. Initialize the network randomly, as usual.

2. Run a forward propagation. Take the output vector from the network (the search vector).
Use it to construct a vector of equal length consisting of 0s and 1s, which [AL90] confusingly
refers to as the output vector. Each element si of the search vector is interpreted as a prob-
ability; the corresponding element oi of the output vector is generated (pseudo-)randomly,
taking the value 1 with probability si and 0 otherwise.

3. Evaluate the performance of the ‘output vector’, to produce a result indicating either that
it is desirable and should be reinforced, or that it is undesirable and should be discouraged.

4. If the ‘output vector’ is to be reinforced, it is simply used as the target vector for a back-
propagation pass: the error vector o− s is propagated through the network.

5. If the ‘output vector’ is to be discouraged, it is slightly less obvious what to do: clearly the
weights should be pushed away from the output vector, but in which direction? In the CRBP
algorithm they are pushed in the exact opposite direction: the vector (1− o)− s. Generally
a lower learning rate is used here than for positive reinforcement, since the network is not
necessarily being pushed towards a good set of values: it is merely being pushed away from
a bad set.

The procedure is repeated until the error has been sufficiently minimized.
Although CRBP allows reinforcement methods to be used to train neural networks, it is still

geared towards immediate reinforcement: the reinforcement value must be calculated after each
forward-propagation pass. There is no direct way to define a fitness function over a longer sequence
of behaviour. With a recurrent network, the network itself can still develop longer-term strategies
from short-term reinforcement, but [Mee96] gives discouraging results about the difficulty of doing
this. However, since most of the tasks I was looking at lent themselves to immediate evaluation
(for example, “has the size of the flock decreased?”), this was not too great a problem.

3.5.2 Implementation of the backpropagation algorithm

Since I intended to experiment with variations in the backpropagation algorithm, I started with
a fairly large, open interface to the backpropagation methods. As it turned out, this interface
remained in place: the failure of backpropagation as an effective training method (see Section 4.1)
meant that it was not worth improving the interface.

Backpropagation works on a single network, so it made sense to implement it using instance
methods of the Net class.3 The main public methods for controlling backpropagation are:

• resetDeltas() zeroes the accumulated weight changes built up over successive backpropa-
gation passes.

• flushContext(float x) sets the values of all the network’s context nodes.

• train(float[] desired) performs a forward-propagation pass followed by a backpropaga-
tion pass against the given target vector. It is assumed that the input values have already
been set with the setIn() method. Weight changes are added to the internal accumulator
variables, but not applied.

3This is in contrast to the genetic algorithm discussed in the next section, which works on populations of networks
and thus requires a somewhat different implementation strategy.
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• changeInputWeights() applies the weight changes accumulated during backpropagation.

• sumSqError() returns the sum of squared errors computed on the last backpropagation pass.

The chief reason for separating out the calculation of weight changes from their application is
to make it easier to experiment with batch and stochastic weight-update techniques (see page 24).

3.6 Genetic algorithms (GAs)

A brief description of common GA techniques is given in Section A.2. The following sections
describe the deviations from “standard practice” in my use of genetic algorithms, and the details
of their implementation in Java.

3.6.1 Applying genetic algorithms to neural nets

I restricted the use of genetic algorithms in the project to evolving the actual weights for the
network, although there is scope for other applications – for example, determining the network
architecture, or adjusting parameters for other learning methods such as backpropagation. How-
ever, I thought that using a genetic algorithm for exactly the same task as CRBP would make for
an interesting comparison.

Following the approach of [Mee96], I ended up using a somewhat unorthodox variant of genetic
training, due to the unusual (for the field of GAs) structure of the solutions I was attempting to
evolve:

String encoding The first deviation from the norm is in the encoding of the strings within
a population. An individual in the population consists of a string of floating-point numbers
representing weights. Of course, it would be possible to convert the weight values to bit-strings,
but this would bring no obvious benefits.

Crossover Crossover is not used at all. This may seem a little odd, but for strings of weights
it makes sense: the operation of a neural network is highly distributed, with few or no easily
identifiable “modules” in most cases. The “parent” networks may be using completely different
strategies to achieve the same goal. Even if they are not, the same network architecture can
produce the same behaviour using radically different weights.4 so an arbitrary substring of a
“good” weight-string is unlikely to possess any intrinsically good properties of its own.

In [Mee96] it was found that, even if weights were grouped into higher-level blocks to counteract
this effect, crossover “did not improve and often hurt performance”. For this reason I decided not
to use crossover, at least not initially.

Mutation Mutation is used much more heavily than is usual. Partly this is to compensate
for the lack of crossover, and partly because mutation need not be such a drastic process when
the string elements are continuous values rather than bits – values can just be slightly perturbed
rather than flipped to the other of two possible states.

In practice, the mutation method used was a fairly brutal one, but one which is successfully
used in [Mee96] and [Fog98]: every weight in the string to be mutated is modified by a random
amount. [Yao99] also cites several successful applications of similar techniques. The range of
modification is configurable by the user, but in practice it was generally between 2 and 10 (that
is, ±1 to ±5).

4As a trivial example, consider a 3-layer feedforward network with activations in the range [−1, 1]. Provided the
activation function is odd, simply negating all the weights will give a network with identical behaviour
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Fitness function The fitness function was implemented in a slightly unusual way. Instead of
a wholly objective function which can assign an absolute fitness to any set of weights, I used
functions which evaluated a network’s fitness with respect to certain environments – i.e., initial
states of the simulation. Given an initial state consisting of the positions and velocities of the
simulated animals, the fitness function runs the simulation for a certain amount of time and assigns
scores based on its behaviour. For example, in most cases the situation “dog runs into wall” would
be awarded a negative score, in order to encourage the propagation of networks which avoid this
behaviour.

One obvious danger with this method is that a network trained in a specific environment will
utilize the specific features of that environment to perform successfully, and may well exhibit very
poor performance when placed in other environments. One way to counteract this is to use a set
of several training environments and take the total or average score. The modification described
below also helps.

Tournament selection The lack of an objective fitness function requires some modification to
the overall structure of the evolution algorithm. As discussed above, it would be undesirable to
train in a single environment; even training in a fixed set of predefined environments would incur
the risk of overspecialization. For this reason, a new set of environments was created at the start
of every generation.

The technique used for creating new generations was tournament selection. Pairs of individuals
are randomly selected from the population, and their fitnesses assessed in the current set of
environments. The loser (i.e. the individual with the lower fitness) is replaced by a mutation
of the winner. To advance evolution by one generation, this procedure is repeated a number of
times equal to the population size. Since the environments are reinitialized at the start of each
generation, overspecialized individuals do not survive for long.

3.6.2 Implementing genetic algorithms in Java

Genetic training proved remarkably simple to implement compared to the intricacies of backprop-
agation. I added a class Population to the neurotic package. This class is instantiated with a
Net and a fitness function, as well as a few training parameters such as population and mutation
rate. Population stores arrays of floats representing weights (either initialized randomly through
the supplied network or loaded from a file) and plugs them into the network when fitness needs
to be assessed.

The fitness function supplied to the network is just an interface consisting of two methods:
initEnviros(int n) initializes the requested number of environments (usually called once at the
start of each generation), and score(Net net, int env) returns the fitness of the given net with
respect to the given environment.

The rest of the class just implements the mutation and tournament selection described in the
previous section, and provides a few accessor methods for things like the current fittest individual
and generation.
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Chapter 4

Results of training

Among all the supervised learning algorithms, backpropagation is probably the most
wi(l)dely used.

— Yann LeCun

4.1 Backpropagation

Since backpropagation is a relatively involved algorithm with plenty of scope for bugs in the
implementation, I decided to start with some simple tests and work up to the use of CRBP on
recurrent networks.

4.1.1 Non-recurrent networks

The first step was to get backpropagation working reliably for non-recurrent networks. The mul-
tilayer perceptron equivalent of “hello world” is the exclusive-or function1. I successfully trained
a non-recurrent network (2+2+1 neurons) to model this function. Training times were highly
dependent on the learning rate and momentum parameters; with high values for both (around 1.0
and 0.8 respectively) the network usually required a few hundred passes through the training set
to reach a sum of squared errors below 0.001. The code for this example is given in Section B.3.1.

I compared the performance of my backpropagation routines with that of PDP++, a publicly-
available neural-net package written in C++. For the XOR example, the behaviour of the two sys-
tems was completely identical given the same starting conditions, so I was satisfied that neurotic
was fairly reliable on non-recurrent networks.

4.1.2 Simple recurrent networks

In a similar vein to the preliminary test for non-recurrent networks, I decided to start by training
an SRN on the function used in [Elm90]: sequential exclusive-or. The idea is that a sequence of
inputs (1 or 0) is presented to the single input node of an SRN. The input sequence is made up of
a number of 3-element subsequences, with the first two elements being random and the third being
their exclusive-or. The network has a single output, which is trained against the next element in
the sequence. Obviously the network can’t predict the first two elements of a subsequence, but
Elman succeeded in training it to predict the third element when the second was presented.

I was unfortunately unable to do the same. In spite of extensive experimentation with tunable
parameters and repeated careful scrutiny of the code for bugs, the network resolutely failed to
converge. Unfortunately [Elm90] is somewhat sketchy on the details of the training process, and
I was unable to find any more detailed references on training SRNs with backpropagation.

1This is mainly because the XOR function can’t be modelled by a single perceptron.
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Slight success with SRNs

Eventually I scaled the training problem down to an even simpler one: the network just needs to
echo the previous input in the sequence. Training from randomly initialized weights proved just
as hopeless as for the XOR problem. However, this problem was so simple that I had little trouble
working out a suitable set of weights by hand. This led to some interesting results: I found that
if I ran backpropagation with an initial weight-set close enough to my known solution, it would
converge. This suggested to me that there was no fundamental problem with the algorithm, but
that some maladjustment of network or learning parameters was preventing effective convergence.
The program listing is given in Section B.3.2; some sample output is shown below.

Performance before training:

Input ***..*...*....*.*..***..*.*.*.***..***...*....*..****.**.*..

Output ?*??.??..??...??.*.?*??.??.*.*.*?*.?*??..??...??.?*?*?.*???.

After 800 backprop passes

Input **..*...**..*...*..*.*....**..**.*..**..*.**.***.*..*.*.***.

Output ***..*...**..*...*..*.*....**..**.*..**..*.**.***.*..*.*.***

The program starts with a 1-2-1 network initialized with weights close to the ones I calculated.
It runs a test by sequentially feeding it 60 random inputs (either 1 or 0, shown as “*” and “.”
respectively) and showing the output (encoded as “.” for under 0.2, “*” for over 0.8, and “?”
otherwise).

The network is then trained with backpropagation on another randomly generated binary
sequence. After 800 passes, there is a clear improvement in the performance; Figure 4.1 shows
how the 11 weights in the network change with training.
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Figure 4.1: Weights in the “input-repeater” neural network of Section 4.1.2, plotted against number
of backpropagation training passes.
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I spite of this promising result, I had already spent a great deal of time trying to get back-
propagation working and could not afford to pursue it any further. I reluctantly abandoned the
implementation of CRBP and moved on to genetic algorithms.

4.2 Genetic algorithm

There were two main areas of experimentation here: the actual mechanism for coupling the neural
network to the dog controller, and the fitness function which pushes the network’s weights towrds
the desired behaviour. In addition, there was scope for variation in the parameters of the genetic
algorithm – for example, the population size and mutation rate.

I created a new AnimalControl class called DogBreeder, which forms the link between the duck
simulation and the neurotic package. The constructor takes a DogControl and a TrainerControl,
for running and training the neural controller respectively. On instantiation, DogBreeder creates
a network and a population of weights. It also creates a DbPanel object, which provides a Swing
interface allowing the user to control the training of the networks. Facilities are provided to start
and stop evolution (which takes place as a background thread), and to alter parameters such as
the population size and the number of hidden nodes. The actual update() function which controls
the dog’s movement is delegated to a servant class implementing DogBreeder.ControlInterface

(which is essentially just a wrapper for update()), since I was making a lot of modifications to
this part.

The Swing GUI for the DogBreeder class is shown in Figure 4.2.

Figure 4.2: The user interface for the DogBreeder class.

4.2.1 Avoiding walls

I thought a good preliminary test for the genetic training method would be wall avoidance: the
fitness function just imposes a heavy penalty (negative score) for running out of the arena. With
only this criterion the most likely result is a dog which doesn’t move at all, so the fitness function
also adds a positive score proportional to the distance moved over the training period.
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I experimented with both direct mappings of the outputs to speed and direction, and with
using them as increments to be added on. I also experimented with different scaling factors for
the outputs. The goal proved easy to achieve, whatever the exact system used.

The best performance seemed to result from mapping one output directly to the dog’s speed,
and using the other as an increment to the direction. This was the system I used for most of the
later experiments.

AvoidWallsFitness, the fitness function I developed for this task, is listed in Section B.1.7.
In operation, the controllers it produces tend to move around the arena in circles, although I did
also find variants which had a more radial pattern of movement.

4.2.2 Training problems

The two main problems I had with genetic training were closely interrelated. The first was the
speed of the simulation. For real-time running of the simulation, my implementation had proved
more than fast enough. However, the genetic training was much more computationally intensive;
it takes hundreds or thousands of simulation steps to evaluate the fitness of a single individual in
a population. This was not a great problem for the wall-avoidance task, since there was no need
to involve the ducks in the simulation. However, as soon as I started tackling problems involving
ducks, training times shot up – the duck controller consumed the bulk of the processor time simply
because there were so many ducks. Depending on the exact parameters, a generation took from
thirty seconds to two or more minutes.

The second problem was with specifying fitness functions. I already mentioned the success of
the “do nothing” tactic in avoiding walls; similarly degenerate solutions tended to crop up to more
complex problems. The solution is to empirically tweak the relative scores assigned by the fitness
function to specify the desired behaviour more exactly. The problem with this is that the speed
of evolution makes each refinement cycle slow, so it can take a great deal of time to arrive at an
effective fitness function.

4.2.3 Herding

In spite of these setbacks, I eventually succeeded in producing a neural controller which can herd
ducks, albeit imperfectly. The fitness function, HerdDucksFitness, is listed in Section B.1.8. The
main points of interest are:

• When initializing environments, the simulation is run for about a hundred steps with no dog
motion. This compensates for the ducks’ natural tendency to flock even without a herder,
by allowing them to settle down.

• As before, the dog is punished for hitting walls, and rewarding for moving.

• The actual herding criterion is calculated by summing the ducks’ distances from the goal
(here, the arena’s centre). At the end of the training period the sum is recalculated. The
decrease in total distance is multiplied by a suitable factor and added to the score.

• The inputs to the network were: the angle and distance to the nearest wall point; the angle
and distance to the flock centre; and the maximum radius of the flock (i.e. the greatest
distance of a duck from the flock centre). Thus the herding strategy was developed without
knowledge of any individual duck positions.

In order to show the controller’s behaviour over time, I instrumented the ArenaView class
to draw a trail behind the dog. Figure 4.3 shows the result of 88 generations of training2 with
HerdDucksFitness. The results are not perfect, but are definitely promising. It is interesting that
the “spiralling” strategy evolved is similar to that developed by Vaughan in [Vau99].

2The other parameters were: population size 48, hidden nodes 5, initial weight mean 0, initial weight range 4,
mutation rate 4, training environments 40, and simulation steps per environment 80.
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The dog starts in the middle. . . . . . and rapidly begins to spiral outwards.

The dog widens the spiral in an attempt to
enclose all the ducks.

The radius of the spiral changes constantly
in response to the flock size, but three
ducks are still left out.

Eventually, all but one of the ducks have
been successfully herded.

Figure 4.3: The genetically developed herding algorithm in action



Chapter 5

Conclusions

A conclusion is just the place where you got tired of thinking.

— Martin H. Fischer

5.1 Results of the project

A duck simulation framework The ducksim package provides a pleasantly modular, object-
oriented framework for implementing and developing duck and herder control algorithms.

Reimplementation of previous work The core parts of the previous duck simulator were
tidied up and re-implemented within the new framework.

The neurotic package A general-purpose package was written for creating and using neural
networks (both feedforward and simple recurrent), with facilities for training them using back-
propagation and genetic methods.

A dog controller Genetic training was applied to develop a controller capable of herding ducks
into the centre of the arena.

5.2 What I learned from the project

Animal behaviour The background to the project taught me some basics of animal flight and
flocking behaviour, how it may be encoded algorithmically, and how it may be utilised for herding.

Neural networks Prior to starting this project I knew very little about neural networks. The
research in the initial stages gave me an overview of the field. Writing neurotic gave me a good
understanding for feed-forward and simple recurrent networks, and of backpropagation. I also
learned the principles of genetic algorithms, and about their application to neural networks.

Java, OOP, and OOD This is the largest project I have ever undertaken in Java and my
first experience with Swing. The project gave me a chance to apply the object-oriented design
techniques from the II.4 Object-Oriented Programming course. Both the duck simulation and the
implementation of neural networks involved some careful object-oriented design (and sometimes
redesign, after finding limitations in the initial implementation).

Research skills This was my first real experience of independent research. I have had to gather
information from a wide variety of sources – books, journals, conference proceedings, technical
reports, web pages, FTP sites and the assembled wisdom of the comp.ai.neural-nets newsgroup.
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5.3 Areas for further investigation

Due to the limited time available for the project there were several areas I was unable to investigate:

Motivational units The previous dog algorithm, in contrast to the neural controller, worked in
a large number of distinct stages or steps. Effectively the highest level was a finite state automaton,
switching states when certain conditions in the simulation were met. Multi-stage behaviour such
as “make the flock size sufficiently small, then move the flock towards the goal” is difficult for a
neural network to model directly, but [CP92] suggests a solution in the form of a motivational
unit – an extra input node which, rather than being influenced directly by the environment, is set
by a user or a higher-level control algorithm. The network can learn different modes of behaviour
depending on the state of the motivational unit.

Evolution of flocking behaviour This wasn’t really a goal of the project, but could form
an interesting extension. Flocking behaviour in real animals has evolved because it improves the
animals’ chances of survival, particularly when faced with predators. There have been successful
attempts, such as [WD92], to recreate this evolution in neurally-controlled simulated animals. It
would be interesting to evolve a neural controller for ducks in the presence of a simulated predator,
and compare its behaviour with that of the duck algorithm constructed in [Vau99].

Faster training When I started using the genetic training algorithm it soon became clear that
the slowness of training was the main obstacle to developing good genetic controllers. The main
bottleneck seemed to be in the duck updating: I obtained a significant improvement by hand-
optimizing the duck controller. Apart from using faster hardware or rewriting the whole thing in
a fully compiled language, there are several feasible ways of improving performance: profiling and
more optimizing; natively compiling speed-critical parts and interfacing them to the simulator
with JNI; and running parallelized versions of backpropagation and genetic training on several
machines at once (both these techniques lend themselves well to efficient parallelization).

The user interface The user interface was not intended to be a major part of the project, so
I did not spend much time on it. There are many possible improvements, particularly regarding
the genetic training algorithm. A user could be employed to supplement the fitness function by
selecting and evaluating networks from the population. There is also scope for presenting the user
with much more detailed information about the state of the population and of the individuals; an
animated display of a working neural net might prove illuminating or, at any rate, pretty.

One neat enhancement would be using the Java reflection API to enable dynamic loading of
dog and duck controllers; different controllers could be used without the need for recompilation.
This would also speed up the development of algorithms.
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Appendix A

Background information

A.1 Feedforward networks and backpropagation

A.1.1 Structure of feedforward networks

An artificial neural network is made up of a set of nodes U = {u1, . . . , un}. Any two nodes ui
and uj may be connected by a directed arc, which has an associated real-valued weight wij : i, j ∈
{1, . . . , n}. The backpropagation algorithm works with a particular type of feedforward network:
in this network architecture, nodes are organised into layers, and a link from a node may only
connect to a node in a layer strictly above it in the network. Thus the network is acyclic. An
example of a three-layer feedforward network is shown in figure A.1.1.

Output layer

Hidden layer

Input layer

Forward links

Figure A.1: An example of a feedforward network

Associated with each node is a number, its activation. For backpropagation networks this is
usually a real in the range [−1, 1] or [0, 1]. (My implementation uses [0, 1].) The bottom layer in
the network (the one into which no arcs are directed) is termed the input layer ; the activations of
its nodes are set externally and form the input of the network. Predictably, the topmost layer is
called the output layer and the activations of its nodes will form the network’s output.

For a node ui not in the input layer, the activation is computed as a function of the activations
of the nodes uj for which links from uj to ui exist. A weighted sum is taken of the activations, and
a predefined activation function f is applied to this sum to give ui’s activation. The activation
a(ui) is given by

a(ui) = f(
∑

a(wji)uj)

There is one other factor in the activation of a node: its bias. This is simply a constant which
is added to the weighted input sum before the activation function is applied. The easiest and most
common way of implementing bias, and of allowing it to be modified by training algorithms, is to
add an input node with a constant non-zero activation (usually 1) and make connections from it
to all the hidden and output nodes in the network. The weights of these connections can then be
adjusted by training algorithms just like any other weights in the network.
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Since there is no restriction on the range of the weights and the activation must be in the range
[0, 1], the activation function must map [−∞,∞] to [0, 1]. Additionally, for backpropagation to
work, it must be monotonic and continuous. The most commonly used function (and the one I
use) is the logistic function f(x) = 1

1+e−x .
The process of computing a function using a neural network simply consists of setting the

input activations to the input values, then successively computing the activations for nodes in
subsequent layers. The activations for the nodes in the final layer form the output.

A.1.2 The backpropagation algorithm

Backpropagation is an algorithm for adjusting the weights of a feedforward network in order to
make it model a particular function. It minimizes error by gradient descent: starting from a ran-
dom point in weight-space, it ascertains the gradient of the error function and adjusts the weights
in that direction, working towards a minimum. Unfortunately the minimum is not guaranteed to
be global, but it is nevertheless a powerful algorithm.

In outline, backpropagation works like this:

1. A training set is assembled, consisting of sample inputs for network, with a desired output
for each input. The weights of the network are initialised to small random values.

2. The network is presented with an input from the training set, and a forward-propagation is
run to produce output values.

3. The difference is calculated between the actual output values and the desired outputs from
the training set. These error values are propagated backwards through the network, allowing
changes in the weights of the connections to be calculated.

4. The weights of the connections are altered.

5. Steps 2-4 are repeated until the network models the desired function with sufficient accuracy.

In slightly more detail, the backprpagation pass works as follows:

1. Take the derivative of the activation function. If the usual logistic function is used, then
the identity f ′(x) ≡ f(x)(1 − f(x)) can be employed to speed up calculation by using the
previously computed activations.

2. Associate with each node ui a real number δi.

3. For each node ui in the output layer, calculate δi by δi = (Ci − ai)f ′(Si), where Ci is the
correct target activation for that node, and Si is the weighted sum used as input to the
activation function (so actually δi = (Ci − ai)ai(1− ai)).

4. Now move backwards through the network’s hidden layers. For each node compute δi =
(
∑

j wijδj)f
′(Si), where the j range over all the nodes to which forward connections run

from i. Since each δi value only depends on those of the nodes in front of it in the network,
they can all be computed consistently in a single backward pass.

5. Finally, update each weight wij with the new value wij + ρδjai. ρ is the learning rate,
usually in the range 0–1 (see below).

There are numerous variations of the algorithm, and several tunable parameters which affect
its performance. Some of the main variations, most of which were incorporated into my simulation,
are:
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• The actual layout of the network. The number of input and output nodes is largely de-
termined by the function which the network is being trained to compute, although in this
project there is considerable choice as to how the inputs and outputs should be encoded (see
Section 3.3). The number of hidden nodes, however, is an important tunable parameter: too
few will result in the network being unable to model the desired function, and too many will
make learning slow and unreliable.

The number of layers is another tunable parameter, but I have kept it at three (four including
the context nodes) for this project.

• The distribution of the initial random weights, which can have a significant effect on the
solution which the network converges to.

• A momentum parameter can be added to the direction of gradient descent, allowing the
algorithm to pick up speed if it makes many consecutive changes in the same direction. This
can speed up learning significantly, but can also lead to minima being missed.

• The learning rate is a fixed factor governing how much the weights are adjusted at each step.
Lower values give slower but more reliable convergence.

• Instead of updating the weights at each iteration (this is known as stochastic update), the
δi values can be accumulated over many iterations, or over the whole training set, and only
applied at the end (batch update).

A.2 Genetic training

Genetic algorithms are conceptually simple, but are widely applicable and can prove highly effec-
tive. The method is modelled on the principle of natural selection. It can be employed on virtually
any problem where (1) the parameters of a possible solution can be encoded as a relatively com-
pact sequence of numbers or symbols and (2) there exists a fitness function or objective function
which can assign a numerical value reflecting how “good” a candidate solution is.1

Genetic algorithms come in numerous variations, but given a suitable problem the general
procedure is as follows2:

1. Devise a way of encoding the parameters of a solution into a fixed-length string or numbers
or symbols. Very often, binary digits are used, but this is by no means mandatory. The
choice of encoding method can have a huge impact on the performance of the algorithm.

2. Initialize a set of randomly generated strings, called the population for obvious reasons.

3. Repeatedly apply the following three techniques:

(a) Reproduction: Assess the fitness of each individual in the population, and produce a
“weighted copy” of the current population. That is, initialize a new population of
the same size by, for each string, copying a string selected at random from the old
population. The selection is linearly weighted by fitness, so that fitter strings have a
higher chance of being selected.

(b) Crossover : select pairs of strings from the population. For each pair, randomly select
a point within the length of a string. Break both strings at this point, and exchange
their final segments. For example, 001122 and 222333 might be split and recombined
halfway to give 001333 and 222122.

1The satisfaction of these two criteria does not, of course, guarantee that a particular genetic algorithm will
work!

2This summary is based on the descriptions given in [Was93] and [Win92].
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(c) Mutation: perturb one or more strings. A string is selected at random, an element
selected at random within that string, and a random modification applied to that
element. Traditionally this method is used very sparingly; mutation rates of the order
of one in a thousand are common.

The genetic algorithm used in this project deviates somewhat from this standard outline; the
differences are described in Section 3.6.1.
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Appendix B

Source code

B.1 ducksim package

B.1.1 DuckSim

package ducksim;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.geom.*;

class RunSim extends Thread {
boolean running;
Arena arena;
int interval;
public RunSim(Arena arena, int interval) {

setDaemon(true);
this.arena = arena;
this.interval = interval;
running = false;
}
public void run() {

running = true;
while (running) {

arena.update();
try { Thread.sleep(interval); }
catch (InterruptedException e) {}
}
}
public void pleaseStop() { running = false; }
}

public class DuckSim {

Arena arena;

class StepAction extends AbstractAction {
public StepAction(String t) { super(t); }
public void actionPerformed(ActionEvent e) {

arena.update();
}
}

class StartStopAction extends AbstractAction {
RunSim runsim;
public StartStopAction(String t) { super(t); }
public void actionPerformed(ActionEvent e) {

if (((String) getValue(NAME)).equalsIgnoreCase("Start")) {
runsim = new RunSim(arena, 10);
runsim.start();
putValue(NAME,"Stop");
} else {

runsim.pleaseStop();

putValue(NAME,"Start");
}
}
}

class ResetAction extends AbstractAction {
public ResetAction(String t) { super(t); }
public void actionPerformed(ActionEvent e) {

arena.resetRandom(true);
arena.repaint();
}
}

public static void main(String[ ] args)
{ DuckSim ducksim = new DuckSim(); }

public DuckSim() {
arena = new Arena(10);
AnimalModel duckModel = new ChengDucks(arena);
arena.setDuckModel(duckModel);
AnimalModel dogModel = new DogBreeder(arena, arena);
arena.setDogModel(dogModel);

try {
UIManager.setLookAndFeel
(UIManager.getCrossPlatformLookAndFeelClassName());

} catch (Exception e) { }

// Control frame

JToolBar toolbar = new JToolBar(JToolBar.VERTICAL);
JFrame cframe = new JFrame("Duck control");
cframe.getContentPane().add(toolbar);

toolbar.setLayout(new GridLayout(3,1));
toolbar.add(new StepAction("Step"));
toolbar.add(new StartStopAction("Start"));
toolbar.add(new ResetAction("Reset"));

cframe.pack();
cframe.setVisible(true);

// Set windows to kill app on closure / Q keypress

WindowAdapter killOnClose = new WindowAdapter() {
public void windowClosing(WindowEvent e)
{ System.exit(0); }
};

cframe.addWindowListener(killOnClose);

KeyListener killOnQ = new KeyAdapter() {
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public void keyTyped(KeyEvent e) {
if (e.getKeyChar() == ’q’ | |

e.getKeyChar() == ’Q’ ) System.exit(0);
}
};

cframe.addKeyListener(killOnQ);
}
}

B.1.2 Arena

// Arena: represents the current state of the duck arena.
// Implements the *Control interfaces, through which the
// DuckModel and DogModel classes interact with it.

package ducksim;

class Arena implements DuckControl, DogControl, TrainerControl {
private int numDucks;
private Pos[ ] duck;
private int numDogs;
private Pos[ ] dog;
private java.util.Random rand = new java.util.Random();
private static final float arenaRadius = 1000;
private float flockR, flockMR;
private Vec flockC;
private boolean flUpToDate; // whether flock{C,R} are updated
private int time; // simulation time
private AnimalModel duckModel;
private AnimalModel dogModel;
private ArenaView arenaView;

Arena(int numDucks) {
this.numDucks = numDucks;
duck = new Pos[numDucks];
flUpToDate = false;
flockC = new Vec();
time = 0;
arenaView = new ArenaView(this);
resetRandom(true);
}

public AnimalModel duckModel() { return duckModel; }
public AnimalModel dogModel() { return dogModel; }
public void startTraining() { arenaView.setActive(false); }
public void stopTraining() { arenaView.setActive(true); }
public void setDogModel(AnimalModel d) { dogModel = d; }
public void setDuckModel(AnimalModel d) { duckModel = d; }
public void repaint() { arenaView.repaint(); }
public void resetRandom() { resetRandom(false); }
public int time() { return time; }

public void resetRandom(boolean setDog) {
for (int i=0; i<numDucks; i++) {

duck[i] = new Pos();
randPoint(duck[i].p, 50f, arenaRadius−50);
randPoint(duck[i].d, 0f, 0.5f);
}
this.numDogs = 1;
dog = new Pos[numDogs];
dog[0] = new Pos();
if (setDog) {

randPoint(dog[0].p, 50f, arenaRadius−50);
randPoint(dog[0].d, 0f, 3.5f);
} else {

dog[0].p.x = 20;
dog[0].p.y = 20;
}
time = 0;
arenaView.reset();
}

private void randPoint(Vec p, float min, float max) {
float r = rand.nextFloat()*(max−min) + min;
float a = rand.nextFloat() * 2 * (float) Math.PI;
p.x = r * (float) Math.cos(a);
p.y = r * (float) Math.sin(a);

}

public float arenaSize() { return arenaRadius; }
public float arenaArea() { return arenaRadius*arenaRadius; }
public float dogRadius() { return arenaRadius/25; }
public float duckRadius() { return arenaRadius/22; }
public float goalSize() { return arenaRadius/22; }
public int ducks() { return numDucks; }
public int dogs() { return numDogs; }
public Pos duck(int i) { return (Pos) duck[i].clone(); }
public Vec duckPos(int i) { return (Vec) duck[i].p.clone(); }
public Vec duckV(int i) { return (Vec) duck[i].d.clone(); }
public Pos dog(int i) { return (Pos) dog[i].clone(); }
public Vec dogPos(int i) { return (Vec) dog[i].p.clone(); }
public Vec dogV(int i) { return (Vec) dog[i].d.clone(); }
public void setDuck(int i, Vec v)
{ duck[i].d.x = v.x; duck[i].d.y = v.y; }
public void setDog(int i, Vec v)
{ dog[i].d.x = v.x; dog[i].d.y = v.y; }
public void setDongle(int i, float a) { dog[i].nAngle = a; }
public void setDungle(int i, float a) { duck[i].nAngle = a; }
public Pos[ ] cloneAllDogs() { return cloneArray(dog); }
public Pos[ ] cloneAllDucks() { return cloneArray(duck); }

private Pos[ ] cloneArray(Pos[ ] in) {
Pos[ ] out = new Pos[in.length];
for (int j=0; j<in.length; j++) out[j] = (Pos) in[j].clone();
return out;
}

// omnipotent trainer methods

public Pos[ ] getAllDogs() { return dog; }
public Pos[ ] getAllDucks() { return duck; }
public void setAllDogs(Pos[ ] newDog) { dog = newDog; }
public void setAllDucks(Pos[ ] newDuck) { duck = newDuck; }

// this is actually a class method, but if I declared it static
// I couldn’t put it in the interface.
// (inherited from last year’s algorithms; I don’t use it.)
public float calcAngle(Vec f) {

float r = 0.0f; // to prevent “variable not initialized”
// Matt’s updated angle code in floats and radians
// scope for optimisation here but not going into it yet
float theta = (float) Math.atan(f.x/f.y); // note sign change!!
if (f.x > 0 && f.y >0) r = theta;
else if (f.x > 0 && f.y < 0) r = (float) Math.PI + theta;
else if (f.x < 0 && f.y < 0) r = (float) Math.PI + theta;
else if (f.x < 0 && f.y > 0) r = (float) Math.PI*2 + theta;
else if (f.x == 0) if (f.y >= 0) r = 0.0f; else r = (float) Math.PI;
return r;
}

public void advance() {
for (int i=0; i<ducks(); i++) duck[i].move();
for (int i=0; i<dogs(); i++) dog[i].move();
flUpToDate = false;
}

public void update() {
time++;
duckModel.update();
dogModel.update();
advance();
duckModel.postUpdate();
dogModel.postUpdate();
arenaView.repaint();
}

public float flockRadius() {
if (!flUpToDate) calcFlockData();
return flockR;
}

public float flockMeanRadius() {
if (!flUpToDate) calcFlockData();
return flockMR;
}

public Vec flockCentre() {
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if (!flUpToDate) calcFlockData();
return (Vec) flockC.clone();
}

private void calcFlockData() {
float nDist;
flockC.x = flockC.y = 0;
for (int i=0; i<numDucks; i++) flockC.pleq(duck[i].p);
flockC.dieq(numDucks);
flockR = flockMR = 0;
for (int i=0; i<numDucks; i++) {

nDist = flockC.distTo(duck[i].p);
flockR = flockR >= nDist ? flockR : nDist;
flockMR += nDist;
}
flockR += duckRadius();
flockMR /= numDucks;
flUpToDate = true;
}
}

// Abstract animal-model classes, and interfaces through which
// they should call Arena’s methods.

interface CommonControl {
float arenaSize();
float arenaArea();
float dogRadius();
float duckRadius();
float goalSize();
int ducks();
int dogs();
Pos duck(int duck); // duck position & velocity
Vec duckPos(int duck); // duck position
Vec duckV(int duck); // duck velocity
Pos dog(int dog); // dog position & velocity
Vec dogPos(int dog); // dog position
Vec dogV(int dog); // dog velocity
float calcAngle(Vec v);
float flockRadius();
Vec flockCentre();
float flockMeanRadius();
Pos[ ] cloneAllDogs();
Pos[ ] cloneAllDucks();
}

// Omnipotent control for training purposes
interface TrainerControl extends DogControl, DuckControl {

void resetRandom();
void resetRandom(boolean setDog);

// Q: why are these “get” methods relegated to the Trainer i/face?
// A: They return the actual array references (not clones), hence
// allow teleportation &c (makes setAllXs kinda pointless, maybe?)
Pos[ ] getAllDogs();
Pos[ ] getAllDucks();

void setAllDogs(Pos [ ] p);
void setAllDucks(Pos [ ] p);
void setDuck(int duck, Vec velocity);
void setDungle(int duck, float angle);
void setDog(int dog, Vec velocity);
void setDongle(int dog, float angle);
void advance();
void startTraining();
void stopTraining();
AnimalModel duckModel();
AnimalModel dogModel();
}

interface DuckControl extends CommonControl {
void setDuck(int duck, Vec velocity);
void setDungle(int duck, float angle);
}

interface DogControl extends CommonControl {
void setDog(int dog, Vec velocity);
void setDongle(int dog, float angle);
}

// This class is used for both the dog and duck model.
// The difference is that each should only see Arena through
// the appropriate interface.

abstract class AnimalModel {
abstract void update();
abstract void postUpdate();
}

B.1.3 ArenaView

// ArenaView: view class for Arena.

package ducksim;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.awt.geom.*;
import java.awt.font.*;

class ArenaView extends JFrame {

ArenaPanel p; // the actual arena display
private boolean active; // whether we should be updating
static boolean trace = true;

public ArenaView(Arena a) {
super("Duck Display");
active = true;
p = new ArenaPanel(a);
setContentPane(p);
p.reset();
pack();
show();
}

public void setActive(boolean a) { active = a; repaint(); }
public boolean isActive() { return active; }
public void reset() { p.reset(); }

class ArenaPanel extends JPanel {

// whether to produce a trace of the dog’s motion
GeneralPath tracePath;
Arena arena;
Font f = new Font("SansSerif",Font.PLAIN,14);
int nextPathUpdate;

ArenaPanel(Arena a) {
super();
arena = a;
setSize(256, 256);
setPreferredSize(new Dimension(256, 256));
tracePath = trace ? new GeneralPath(0, 1000) : null;
}

public void reset() {
tracePath.reset();
nextPathUpdate = 0;
}

public void paintComponent(Graphics oldGraphics) {
Graphics2D g = (Graphics2D) oldGraphics;
int size = getWidth()<getHeight() ? getWidth() : getHeight();
int centre = size/2;
int radius = centre;

g.setRenderingHint(RenderingHints.KEY ANTIALIASING,
RenderingHints.VALUE ANTIALIAS ON);

clear(g);

g.setColor(Color.black);
g.setFont(f);
g.setStroke(new BasicStroke(4));
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g.draw(new Ellipse2D.Float(2,2,size−4,size−4));

if (active) {
if (trace) {

final float x = arena.dogPos(0).x;
final float y = arena.dogPos(0).y;
g.setColor(Color.darkGray);
g.setStroke(new BasicStroke(1));
if (arena.time()>=nextPathUpdate) {

if (nextPathUpdate==0) tracePath.moveTo(x,y);
else tracePath.lineTo(x,y);
nextPathUpdate += 10;
}
AffineTransform a = new AffineTransform();
a.translate(centre, centre);
a.scale(radius/arena.arenaSize(), radius/arena.arenaSize());
g.draw(tracePath.createTransformedShape(a));
}
for (int i=0; i<arena.ducks(); i++)

drawDuck(size, g, arena.duck(i));
for (int i=0; i<arena.dogs(); i++)

drawDog(size, g, arena.dog(i));
g.setColor(Color.black);
g.drawString(String.valueOf(arena.time()), 4, 16);
} else {

drawText(g, "Display inactive");
}

}

private void drawText(Graphics2D g, String text) {
Rectangle2D box = getBounds();
FontRenderContext frc = g.getFontRenderContext();
Rectangle2D bounds = f.getStringBounds(text,frc);
LineMetrics metrics = f.getLineMetrics(text,frc);
float width = (float) bounds.getWidth();
float lineheight = metrics.getHeight();
float ascent = metrics.getAscent();
float x0 = (float) (box.getX() + (box.getWidth() − width)/2);
float y0 = (float) (box.getY() + (box.getHeight() − lineheight)/2

+ ascent);
g.drawString(text, x0, y0);
}

private void drawDog(int size, Graphics2D g, Pos p) {
final float r = size / 50;
final float x = (size/2) + p.p.x * (size/2) / arena.arenaSize();
final float y = (size/2) + p.p.y * (size/2) / arena.arenaSize();

g.setColor(Color.black);
g.setStroke(new BasicStroke(4));
g.draw(new Ellipse2D.Float(x−r, y−r, 2*r, 2*r));
g.setColor(Color.red);
g.setStroke(new BasicStroke(1));
g.draw(new Line2D.Float(x, y,

x+ r*p.d.x * 2f,
y + r*p.d.y * 2f ));

}

private void drawDuck(int size, Graphics2D g, Pos p) {
final float r = size / 60;
final float x = (size/2) + p.p.x * (size/2) / arena.arenaSize();
final float y = (size/2) + p.p.y * (size/2) / arena.arenaSize();

g.setColor(Color.blue);
g.setStroke(new BasicStroke(2));
g.draw(new Ellipse2D.Float(x−r, y−r, 2*r, 2*r));
g.setColor(Color.red);
g.setStroke(new BasicStroke(1));
g.draw(new Line2D.Float(x, y,

x+ r*p.d.x*2,
y + r*p.d.y*2));

}

// super.paintComponent clears offscreen pixmap,
// since we’re using double buffering by default.
protected void clear(Graphics g) {

super.paintComponent(g);
}

}

}

B.1.4 ChengDucks

/* ChengDucks: the duck model, developed by Richard Cheng
last year from Richard Vaughan’s original algorithm, now translated
from C++ to Java and tidied up for this project. */

package ducksim;

class ChengDucks extends AnimalModel {

/* NB: The arena radius is hardwired to 1000. There’s not really
any reason to change this for the purposes of this project, so
it makes sense to use final statics and gain some extra speed. */

final static float ARENASIZE = 1000;
final static float ARENAAREA = ARENASIZE * ARENASIZE;
final static float DUCKRADIUS = ARENASIZE / 22;
final static float K1 = ARENAAREA/10;
final static float K2 = ARENAAREA/100;
final static float K3 = ARENAAREA/100;
final static float K4 = ARENAAREA/1; // was ARENAAREA/10, rich
final static float L = ARENASIZE/6; // was ARENASIZE/4, rich
final static float WALLDIST = DUCKRADIUS + 15;
// for duck-wall repulsion
final static float MOMENTUM = 0.8f;
// *new* proportion of duck’s previous movement vector, rich
final static float K5 = 1000*1000/10;
// for duck-duck attraction in new1
final static float ATTRACTDIST = 1000/4;
// for duck-duck attraction in new2
final static float FLIGHTDIST = 1000/4;
// for duck-herder repulsion
final static float SUCCDIST = 175;
final static float DUCKTOPSPEED = 4; // a duck’s top speed
int nFlockRadius;
DuckControl state;

ChengDucks(DuckControl state) {
this.state = state;
}

void update()
{

// Vec vArenaCentre = new Vec(0,0);
// We can ignore this since it’s zero; speed is more important
// for now.

Vec totforce, wallpt, duckpos, otherduckpos, herderpos, duckV, endpt;

for (int i = 0; i<state.ducks(); i++) {
float dist, force;
duckpos = state.duckPos(i);
totforce = new Vec(0,0);

// *new* duck attraction instinct 2 (limited range attraction)
for (int j = 0; j < state.ducks(); j++) {

if (j == i) continue;

otherduckpos = state.duckPos(j);
float attforce, repforce;

dist = otherduckpos.mi(duckpos).abs();
attforce = K1 / ((dist + L) * (dist + L));
repforce = − K2 / (dist * dist);

attforce −= K1 / ((ATTRACTDIST + L) * (ATTRACTDIST + L));
repforce −= − K2 / (ATTRACTDIST * ATTRACTDIST);

if (attforce < 0.0) attforce = 0.0f;
if (repforce > 0.0) repforce = 0.0f;
force = attforce + repforce;
totforce.pleq( otherduckpos.mi(duckpos).unit().ti(force) );

29



}

wallpt = duckpos.unit().ti(ARENASIZE);
dist = wallpt.distTo(duckpos);
force = − K3 / (dist * dist);
force −= − K3 / (WALLDIST * WALLDIST);
if (force > 0) force = 0.0f;
totforce.pleq( duckpos.dirTo(wallpt).ti(force) );

// *new* herder repulsion instinct
for (int j = 0; j < state.dogs(); j++) {

herderpos = state.dogPos(j);
dist = herderpos.distTo(duckpos);
force = − K4 / (dist * dist);
force −= − K4 / (FLIGHTDIST * FLIGHTDIST);
if (force > 0.0) force = 0.0f;
totforce.pleq(duckpos.dirTo(herderpos).ti(force));
}

duckV = state.duck(i).d.ti(MOMENTUM).
pl(totforce.ti(1−MOMENTUM));

// state.setDuck(i,state.duck(i).d.ti(MOMENTUM).
// pl(totforce.ti(1-MOMENTUM)));

// duck speed limiter
// if (duckV.abs() > 3.5f) duckV.dieq(3.5f);
if (duckV.abs() > 3.5f) duckV.tieq(3.0f / duckV.abs());

// richie’s duck wall avoidance code.
endpt = duckpos.pl(duckV);
if (endpt.abs() > ARENASIZE/2 − 2) {

wallpt = endpt.unit().ti(ARENASIZE/2−5);
duckV.mieq( endpt.mi(wallpt).ti(0.01f) );
}
state.setDuck(i, duckV);
}
}

void postUpdate() {}
}

B.1.5 DogBreeder

// DogBreeder

/* Framework for genetically developing neural networks for dog
control. Includes a user interface, DbPanel, as an inner class.
Servant classes are used for the fitness function and for the
actual network / dog-control interface. */

package ducksim;

import neurotic.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.io.*;

public class DogBreeder extends AnimalModel {

DogControl dogCont;
TrainerControl trainCont;
Net net;
Population pop;
DbPanel controlPanel;
Fitness fitness;
int hiddens, popn, mean, range, muteRate, envs, tSteps;
final static float PI = (float) Math.PI;
ControlInterface contInt;;

public DogBreeder(DogControl dogCont,
TrainerControl trainCont) {

this.dogCont = dogCont;
this.trainCont = trainCont;
contInt = new DogControlIface(dogCont, trainCont);

reInit(contInt.inputs(), 48, 0, 4, 4, 20, 64);
fitness = new HerdDucksFitness(trainCont, tSteps, this, new Vec());
// fitness = new AvoidWallsFitness(trainCont, tSteps, this, new Vec());
createNets();
controlPanel = new DbPanel(this);
useCurrentBest();
}

void reInit(int hiddens, int popn, int mean, int range,
int muteRate, int envs, int tSteps) {

this.hiddens = hiddens; this.popn = popn;
this.mean = mean; this.range = range;
this.muteRate = muteRate; this.envs = envs;
this.tSteps = tSteps;
}

void createNets() {
net = new Net(contInt.inputs(), hiddens, 2, true);
pop = new Population(net, fitness, popn, mean,

range, muteRate, envs);
}

void evolve() { pop.evolve(); }
void evolve(int n) { pop.evolve(n); }
int getCurrGen() { return pop.getCurrGen(); }
int getPopn() { return pop.popSize(); }
float getMaxFitness() { return pop.fitness[pop.fittest]; }
float getMinFitness() { return pop.fitness[pop.leastFit]; }

public interface ControlInterface {
void update(Net n, DogControl c);
int inputs();
}

void update(Net n, DogControl c) { contInt.update(n, c); }
void update() { update(net, dogCont); }

void postUpdate() { }

void useCurrentBest() {
net.setAllWeights(pop.weights[pop.fittest]);
}

// Save current parameters and weights to a file
void save(File f) {

try {
Writer w = new FileWriter(f);
w.write(hiddens +" "+ popn +" "+ mean +" "+ range +" "+

muteRate +" "+ envs +" "+ tSteps + "\n");
pop.save(w);
}
catch (IOException e) { throw new Error(e.getMessage()); }
}

// Load parameters and weights from a file
// format: hiddens, popn, mean, range, muteRate, envs, tSteps
void load(File f) {

try {
Reader reader = new FileReader(f);
StreamTokenizer in = new StreamTokenizer(reader);

hiddens = readInt(in);
popn = readInt(in);
mean = readInt(in);
range = readInt(in);
muteRate = readInt(in);
envs = readInt(in);
tSteps = readInt(in);
net = new Net(contInt.inputs(), hiddens, 2, true);
pop = new Population(net, fitness, envs, reader);
useCurrentBest();
controlPanel.updateFields();
}
catch (IOException e) { throw new Error(e.getMessage()); }
}

private int readInt(StreamTokenizer i)
throws java.io.IOException
{ i.nextToken(); return (int) i.nval; }
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}

class DbPanel extends JFrame {

JLabel popL, maxL, minL, genL, stepL;
JTextField popF, maxF, minF, genF, stepF;
DogBreeder db;
JToolBar toolbar;
java.util.Timer timer;

DbPanel(DogBreeder db) {
super("Dog breeder control");
this.db = db;
popL = new JLabel("Population");
maxL = new JLabel("Max. fitness");
minL = new JLabel("Min. fitness");
genL = new JLabel("Generation");
stepL = new JLabel("Gen. step");
popF = new JTextField();
maxF = new JTextField();
minF = new JTextField();
genF = new JTextField();
stepF = new JTextField("256",5);
updateFields();

JPanel p = new JPanel();
p.setLayout(new GridLayout(5,2,4,4));
p.add(popL); noEdit(popF); p.add(popF);
p.add(maxL); noEdit(maxF); p.add(maxF);
p.add(minL); noEdit(minF); p.add(minF);
p.add(genL); noEdit(genF); p.add(genF);
p.add(stepL); p.add(stepF);
getContentPane().add(p, BorderLayout.NORTH);

toolbar = new JToolBar();
toolbar.setBorder(new EtchedBorder());
toolbar.add(new EvolveStepAction("Evolve"));
toolbar.add(new StartStopAction("Start"));
toolbar.add(new ReInitAction("Reinit"));
toolbar.add(new LoadSaveAction("Load"));
toolbar.add(new LoadSaveAction("Save"));

getContentPane().add(toolbar, BorderLayout.SOUTH);

pack(); setVisible(true);
timer = new java.util.Timer(true); // kill timer when we exit
setDefaultCloseOperation(DISPOSE ON CLOSE);
}

private void noEdit(JTextField t) {t.setEditable(false);}

void updateFields() {
popF.setText(String.valueOf(db.getPopn()));
maxF.setText(String.valueOf(db.getMaxFitness()));
minF.setText(String.valueOf(db.getMinFitness()));
genF.setText(String.valueOf(db.getCurrGen()));
}

class EvolveStepAction extends AbstractAction {
public EvolveStepAction(String t) { super(t); }
public void actionPerformed(ActionEvent e) {

int step;
try { step = Integer.parseInt(stepF.getText()); }
catch (NumberFormatException ex)
{ stepF.setText(String.valueOf(step = 1)); }

db.evolve(Integer.parseInt(stepF.getText()));
db.useCurrentBest();
updateFields();
}
}

class StartStopAction extends AbstractAction {

Evolve evolution;
UpdateGen updateGen;
public StartStopAction(String t) {

super(t);
// putValue(“NAME”,“Start”);
}
public void actionPerformed(ActionEvent e) {

if (((String) getValue(NAME)).equalsIgnoreCase("Start")) {
// timer.schedule(evolve = new Evolve(), 0, 2);
evolution = new Evolve();
timer.schedule(updateGen = new UpdateGen(), 0, 1000);
putValue(NAME,"Stop");
db.trainCont.startTraining();
} else {

updateGen.cancel();
evolution.pleaseStop();
putValue(NAME,"Start");
db.trainCont.stopTraining();
}
}
}

class ReInitAction extends AbstractAction {
public ReInitAction(String t) { super(t); }
public void actionPerformed(ActionEvent e) {

SetupFrame setupFrame = new SetupFrame();
setupFrame.show();
}
}

class LoadSaveAction extends AbstractAction {
public LoadSaveAction(String t) { super(t); }
public void actionPerformed(ActionEvent e) {

JFileChooser chooser = new JFileChooser();
if (((String) getValue(NAME)).equalsIgnoreCase("Load")) {

if (chooser.showOpenDialog(DbPanel.this) == 0)
db.load(chooser.getSelectedFile());

} else if (chooser.showSaveDialog(DbPanel.this) == 0)
db.save(chooser.getSelectedFile());

}
}

class Evolve extends Thread {
boolean running;
public Evolve() {

setDaemon(true);
running = true;
start();
}
public void run() {

while (running) { db.evolve(); updateFields(); }
db.useCurrentBest();
}
public void pleaseStop() { running=false; }
}

class UpdateGen extends java.util.TimerTask {
public void run()
{ genF.setText(String.valueOf(db.getCurrGen())); }
}

class SetupFrame extends JFrame {
JToolBar stoolbar;
JTextField hidF, popF, meanF, rangeF, muteF, envsF, stepsF;

SetupFrame() {
super("Dog Breeder Setup");

hidF = new JTextField(String.valueOf(db.hiddens));
popF = new JTextField(String.valueOf(db.popn));
meanF = new JTextField(String.valueOf(db.mean));
rangeF = new JTextField(String.valueOf(db.range));
muteF = new JTextField(String.valueOf(db.muteRate));
envsF = new JTextField(String.valueOf(db.envs));
stepsF = new JTextField(String.valueOf(db.tSteps));

JPanel p = new JPanel();
p.setLayout(new GridLayout(7,2,4,4));
p.add(new JLabel("Hidden nodes")); p.add(hidF);
p.add(new JLabel("Population")); p.add(popF);
p.add(new JLabel("Weight mean")); p.add(meanF);
p.add(new JLabel("Weight range")); p.add(rangeF);
p.add(new JLabel("Mut’n rate")); p.add(muteF);
p.add(new JLabel("Evironments")); p.add(envsF);
p.add(new JLabel("Sim’n length")); p.add(stepsF);
getContentPane().add(p, BorderLayout.NORTH);
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toolbar = new JToolBar();
toolbar.setBorder(new EtchedBorder());
toolbar.add(new CancelAction("Cancel"));
toolbar.add(new OkAction("ReInit"));
getContentPane().add(toolbar, BorderLayout.SOUTH);
pack();
}

class CancelAction extends AbstractAction {
public CancelAction(String t) { super(t); }
public void actionPerformed(ActionEvent e) {

dispose();
}
}

class OkAction extends AbstractAction {
public OkAction(String t) { super(t); }
public void actionPerformed(ActionEvent e) {

db.reInit(getInt(hidF, 4), getInt(popF, 48),
getInt(meanF, 0), getInt(rangeF, 4),
getInt(muteF, 4), getInt(envsF, 20),
getInt(stepsF, 32));

db.createNets();
updateFields();
dispose();
}
private int getInt(JTextField t, int d) {

return Integer.parseInt(t.getText());
}
}

}

}

B.1.6 DogControlIface

// DogControlIface

// a class to interface neural network inputs and outputs to
// the DogControl interface

package ducksim;
import neurotic.*;

class DogControlIface implements DogBreeder.ControlInterface {

DogControl dogCont;
TrainerControl trainCont;
final static float PI = (float) Math.PI;
final static int inputs = 5; // # input nodes

DogControlIface(DogControl dogCont, TrainerControl trainCont) {
this.dogCont = dogCont;
this.trainCont = trainCont;
}

public int inputs() { return inputs; }

public void update(Net net, DogControl control) {
Pos dogPos = control.dog(0);
Vec wall = wallPoint(dogPos.p); // nearest wall point

net.setIn(0, normAngle(wall.angle() − dogPos.d.angle()));
// Angle to nearest wall point
net.setIn(1, dogPos.p.distTo(wall) / control.arenaSize());
// distance to nearest wall point
net.setIn(2, normAngle( dogPos.p.angleTo(control.flockCentre())

− dogPos.d.angle()));
// angle to flock centre
net.setIn(3, dogPos.p.distTo(control.flockCentre()) /

control.arenaSize());
// distance to flock centre
net.setIn(4, 2 * control.flockRadius() / control.arenaSize());
// size of flock
net.think();

float theta = dogPos.d.angle();
float r = dogPos.d.abs();
r = net.getOut(0) * 16;
theta += 0.9 * (net.getOut(1) − 0.5f); // * PI
dogPos.d.x = (float) (r * Math.sin(theta));
dogPos.d.y = (float) (r * Math.cos(theta));
control.setDog(0, dogPos.d);
}

// map angle in radians onto [0,1]
// -pi |-> 0, +pi |-> 1, values outside [-pi,pi] wrap.
private float normAngle(float theta) {

float out = ( (theta + PI) / (2*PI) ) % 1.0f;
if (out<0) out += 1.0f;
return out;
}

// find nearest point on arena wall
Vec wallPoint(Vec v) {

return v.unit().ti(trainCont.arenaSize()).mi(v);
}

}

B.1.7 AvoidWallsFitness

// AvoidWallsFitness

// Fitness function which awards score for moving and for avoiding walls

package ducksim;

import neurotic.*;

class AvoidWallsFitness implements Fitness {
class Enviro {

Pos[ ] dogs; Pos[ ] ducks;
// NB: vars not init’ed, since we’ll just clone into them
}
Enviro[ ] envs; // environments to train
TrainerControl trainCont; // i/face to arena
int tSteps; // #steps per training enviro.
DogBreeder db;
Pos[ ] duck;
int numDucks;
AnimalModel duckModel;
Vec goal;

public AvoidWallsFitness(TrainerControl t, int s, DogBreeder d,
Vec g) {

trainCont = t;
tSteps = s;
db = d;
goal = g;
duck = trainCont.getAllDucks();
numDucks = duck.length;
duckModel = trainCont.duckModel();
}

// Initialise environments
public void initEnviros(int n) {

envs = new Enviro[n];

for (int i=0; i<n; i++) {
trainCont.resetRandom(true);
envs[i] = new Enviro();
envs[i].dogs = trainCont.cloneAllDogs();
envs[i].ducks = trainCont.cloneAllDucks();
}
}

public float score(Net net, int env) {
trainCont.setAllDogs(envs[env].dogs);
trainCont.setAllDucks(envs[env].ducks);

int i;
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float score = 50000;
Pos oldPos = trainCont.dog(0), newPos;
Pos origPos = (Pos) oldPos.clone();
float improvement = 0;
final float r = trainCont.arenaSize() − 30;

for (i=0; i<tSteps; i++) {
// duckModel.update();
/* I’ve commented this out to speed things up, since

the dog is (or should be) ignoring the ducks anyway. */
db.update(net, trainCont);
trainCont.advance();
newPos = trainCont.dog(0);

if (newPos.p.abs() > r − 50) score −= 20000;
// impose a heavy penalty for hitting a wall
float a = newPos.d.abs();
if (a > 4.0) score −= a * 20;
// penalise dog for moving too fast
oldPos = newPos;
}

// Reward the dog for moving, to avoid falling into the
// degenerate “do nothing” solution
score += (origPos.p.distTo(oldPos.p)) * 50;

return score;
}

}

B.1.8 HerdDucksFitness

// HerdDucksFitness

// Fitness function which assigns good scores for decreasing the flock
// size.

package ducksim;

import neurotic.*;

class HerdDucksFitness implements Fitness {
class Enviro {

Pos[ ] dogs; Pos[ ] ducks;
// NB: vars not init’ed, since we’ll just clone into them
}
Enviro[ ] envs; // environments to train
TrainerControl trainCont; // i/face to arena
int tSteps; // #steps per training enviro.
DogBreeder db;
Pos[ ] duck;
int numDucks;
AnimalModel duckModel;
Vec goal;

public HerdDucksFitness(TrainerControl t, int s, DogBreeder d,
Vec g) {

trainCont = t;
tSteps = s;
db = d;
goal = g;
duck = trainCont.getAllDucks();
numDucks = duck.length;
duckModel = trainCont.duckModel();
}

// Initialise environments
public void initEnviros(int n) {

envs = new Enviro[n];

for (int i=0; i<n; i++) {
trainCont.resetRandom(true);
envs[i] = new Enviro();
envs[i].dogs = trainCont.cloneAllDogs();
trainCont.setDog(0, new Vec(0,0));

/* Ducks tend to group together naturally, even without

being herded. Therefore I run the simulation for a bit

without moving the dog, in order to let them settle a bit

and get a more neutral starting state. */

for (int j=0; j<128; j++) {
duckModel.update();

trainCont.advance();

duckModel.postUpdate();

}
envs[i].ducks = trainCont.cloneAllDucks();

}
}

public float score(Net net, int env) {
trainCont.setAllDogs(envs[env].dogs);

trainCont.setAllDucks(envs[env].ducks);

int i;

float score = 50000;

Pos oldPos = trainCont.dog(0), newPos;

Pos origPos = (Pos) oldPos.clone();

float improvement = 0;

final float r = trainCont.arenaSize() − 30;

// Measure initial total distance from goal (i.e. centre)

for (i=0; i<numDucks; i++)

improvement += duck[i].p.abs();

for (i=0; i<tSteps; i++) {
duckModel.update();

db.update(net, trainCont);

trainCont.advance();

duckModel.postUpdate();

newPos = trainCont.dog(0);

if (newPos.p.abs() > r − 50) score −= 20000;

// impose a heavy penalty for hitting a wall

float a = newPos.d.abs();

if (a > 6.0) score −= a * 20;

// penalise dog for moving too fast

oldPos = newPos;

}

// Subtract new total distance from goal,

// and calculate score accordingly

for (i=0; i<numDucks; i++)

improvement −= duck[i].p.abs();

score += improvement * 10000;

// Reward the dog for moving, to avoid falling into the

// degenerate “do nothing” solution

score += (origPos.p.distTo(oldPos.p)) * 2;

return score;

}

}
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B.1.9 Vec

package ducksim;

class Vec implements Cloneable {
float x,y;
Vec(float x, float y) {

this.x = x;
this.y = y;
}
Vec() { this.x = this.y = 0; }

float abs()
{ return (float) Math.sqrt(x*x + y*y); }
float distTo(Vec v)
{ return (float) Math.sqrt((x−v.x)*(x−v.x)+(y−v.y)*(y−v.y)); }
Vec dirTo(Vec v) {

float dx, dy, a;
dx = v.x−x; dy = v.y−y;
a = (float) Math.sqrt(dx*dx+dy*dy);
if (a==0) throw new Error("Can’t normalize a zero vector!");
return new Vec(dx/a, dy/a);
}

// angle in radians: straight down = 0, straight up = +/- pi
float angle() { return (float) Math.atan2(x,y); }
float angleTo(Vec v) { return (float) Math.atan2(v.x−x,v.y−y); }
float angleFrom(Vec v) { return (float) Math.atan2(x−v.x,y−v.y); }

Vec unit() {
float a = (float) Math.sqrt(x*x + y*y);
if (a==0) throw new Error("Can’t normalize a zero vector!");
// if (a==0) return new Vec(0,0);
return new Vec(x/a, y/a); }

Vec norm() {
float a = (float) Math.sqrt(x*x + y*y);
if (a==0) throw new Error("Can’t normalize a zero vector!");
x/=a; y/=a; return this;
}
Vec ti(float a) { return new Vec(x*a, y*a); }
Vec tieq(float a) { x*=a; y*=a; return this; }
Vec di(float a) { return new Vec(x/a, y/a); }
Vec dieq(float a) { x/=a; y/=a; return this; }
Vec pl(float a) { return new Vec(x+a, y+a); }
Vec pl(Vec a) { return new Vec(x+a.x, y+a.y); }
Vec pleq(Vec a) { x+=a.x; y+=a.y; return this; }
Vec mi(float a) { return new Vec(x−a, y−a); }
Vec mieq(float a) { x−=a; y−=a; return this; }
Vec mi(Vec a) { return new Vec(x−a.x, y−a.y); }
Vec mieq(Vec a) { x−=a.x; y−=a.y; return this; }

boolean equals(float e, Vec v) {
if (Math.abs(v.x−x)<e && Math.abs(v.y−y)<e) return true;
return false;
}

static Vec add(Vec a, Vec b)
{ return new Vec(a.x+b.x, a.y+b.y); }
static Vec add(Vec a, float b)
{ return new Vec(a.x+b, a.y+b); }
static Vec add(float a, Vec b)
{ return new Vec(a+b.x, a+b.y); }
static Vec sub(Vec a, Vec b)
{ return new Vec(a.x−b.x, a.y−b.y); }

public Object clone() {
try {return super.clone();}
catch (CloneNotSupportedException e) {

// this should never happen
throw new InternalError("EEK! " + e.toString());
}
}
}

B.1.10 Pos

// Pos: a class to encapsulate the position and velocity of
// an entity in the simulation

package ducksim;

class Pos implements Cloneable {
Vec p, d;
float nAngle;
/* the nAngle field is used by last year’s algorithms. I’m

not sure exactly what it represents, and I don’t use it. */
Pos() {

p = new Vec();
d = new Vec();
}
void move() {

p.x += d.x;
p.y += d.y;
}
public Object clone() {

Pos posCopy;
try {posCopy = (Pos) super.clone();}
catch (CloneNotSupportedException e) {

// this should never happen
throw new InternalError("ERK! " + e.toString());
}
posCopy.p = (Vec) p.clone();
posCopy.d = (Vec) d.clone();
return posCopy;
}
}

B.2 neurotic package

B.2.1 Axon

package neurotic;

/* An Axon is either a neuron or an input node: anything
that can provide an input to a neuron. All we care is
that the neuron at the other end of the forward connection
can get at its output. */

abstract class Axon {
float act;
String label;
Link[ ] outputs;

// activation value (just returns cached value, *doesn’t* recalculate)

float act() { return act; }
// arbitrary name, mainly for debugging
String label() { return label; }

float delta() {
throw new Error("Unimplemented delta function called on Axon.");
// Yes, it is a bit of a fudge, but it keeps a lot of other
// things neat.
}

abstract int layer(); // 0=input, 1=context, 2=hidden, 3=output

/* Creating two interlinked Axons simultaneously is tricky,
so we create the input one first, and use this method to tell
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it who it’s outputting to. (This is the responsibility of the
output Neuron.) */

void addOutput(Link x) {
Link[ ] os = new Link[outputs.length+1];
System.arraycopy(outputs, 0, os, 0, outputs.length);
os[outputs.length] = x;
outputs = os;
// Vector would be neater, but might slow propagation bits down
}

}

/* Input node: just stores one value and always returns it as its
activation. The activation can be changed by the set() method. */

class InputNode extends Axon {
InputNode(float act, String label) {

this.act = act;
this.label = label;
outputs = new Link[0];
}
int layer() { return 0; }
void set(float act) { this.act = act; }
}

// Class for hidden and output nodes.
class Neuron extends Axon {

Link[ ] inputs;
float delta; // for backprop calculation
Net net; // parent network, to determine activation fn & suchlike
int layer;

// Initial activation is irrelevant for neuron, so I should
// probably take it out of the constructor
public Neuron(Link[ ] inputs, Net net, int layer, float act,

String label) {
this.inputs = inputs;
this.outputs = new Link[0];
this.net = net;
this.layer = layer;
this.act = act;
this.label = label;
// It’s our responsibility to set ‘output’ on the links
for (int i=0; i<inputs.length; i++) {

inputs[i].output = this;
inputs[i].input.addOutput(inputs[i]);
}
}

public float delta() { return delta; }
public int layer() { return layer; }

/* Now that I’ve moved context nodes into their own class,
this is redundant, at least if I’m sticking to SRNs. */

public void addInputs(Link[ ] xs) {
// first, set the outputs for the links
for (int i=0; i<xs.length; i++) {

xs[i].output = this;
xs[i].input.addOutput(xs[i]);
}
Link[ ] newI = new Link[inputs.length + xs.length];
System.arraycopy(inputs, 0, newI, 0, inputs.length);
System.arraycopy(xs, 0, newI, inputs.length, xs.length);
// weights etc. already initialized by Link constructor
inputs = newI;
}

/* Calculate our activation and cache it in ‘act’.
Does NOT force recalculation of any other activations.

*/
public void recalc() {

float sum = 0;
for (int i=0; i<inputs.length; i++)

sum += inputs[i].weight * inputs[i].input.act();
// XXX this is a bit of a mess
if (false) {
if (Debug.lots) {

for (int i=0; i<inputs.length; i++)
System.err.println(inputs[i].weight+" * "+inputs[i].input.act());

System.err.println("------------------------");
}

if (Float.isNaN(sum)) {
for (int i=0; i<inputs.length; i++)

System.err.println(inputs[i].weight+" * "+inputs[i].input.act());
throw new Error("Looks like we’ve hit NaN. . .");
}
}
act = net.act.f(sum); // activation function
}

}

class ContextNode extends Axon {
Link input; // We shouldn’t have more than one input
Net net; // parent network, to determine activation fn & suchlike

public ContextNode(Net net, float act, String label) {
outputs = new Link[0];
this.net = net;
act = act;
this.label = label;
}

public int layer() { return 1; }

/* A context node just copies the output of the neuron it’s
connected to. */

void recalc() { act = input.input.act(); }

/* WARNING: If this is called more than once, an output of
the node at the other end of the old link will still be
pointing hither, and all hell may well break loose. So
DON’T DO IT KIDS. */

void setInput(Link l) {
l.output = this;
l.input.addOutput(l);
input = l;
}
}

B.2.2 Link

package neurotic;

import java.util.*;

/* A Link sits between two Axons. Storing stuff like the
weight in one or the other of them leads to problems when
the other one wants to get at it; this is neater.

*/
class Link {

Axon input; // input neuron
Axon output; // output neuron
float weight; // weighting of input
boolean trainable; // backlinks aren’t trainable
float wacc; // accumulator for batch update
float dw; // change in weight (need to save for momentum)

public Link(Axon i, boolean t, float w, float range)
{ this(i, t, w, range, new Random()); }

// input trainable? mean wt range of weights
public Link(Axon i, boolean t, float w, float range, Random rnd) {

input = i;
output = null; // this will be set during Neuron construction
trainable = t;
wacc = dw = 0f;
if ( (!t) && (w!=1.0f | | range!=0f) && Debug.on)

System.err.println("Warning: you’d expect a non-trainable "+
"link to have a weight of 1.");

randomizeWeight(w, range, rnd);
}

public void randomizeWeight(float mean, float range)
{ randomizeWeight(mean, range, new Random()); }

public void randomizeWeight(float mean, float range, Random rnd)
{ weight = mean + rnd.nextFloat()*range − range/2; }
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}

B.2.3 Net

package neurotic;

import java.io.*;
import java.util.*;

/* Simple recurrent neural net package, second attempt. */

class Debug {
public static boolean on = false;
public static boolean lots = false;

}

public class Net {
InputNode[ ] ilyr; // input layer
ContextNode[ ] clyr; // context layer
Neuron[ ] hlyr; // hidden layer
Neuron[ ] olyr; // output layer
public float rate; // learning rate
public float momentum;
float sumSqError; // sum of squared errors
Random rnd; // our random generator (for weights)

/* Network architecture is normal feedforward, or SRN
like Elman ’90, depending on ‘recurrent’ flag */

public Net(int inputs, int hiddens, int outputs, boolean recurrent) {

rnd = new Random();
int contexts = recurrent ? hiddens : 0; // # context nodes
ilyr = new InputNode[inputs+1]; // extra one for threshold bias
clyr = new ContextNode[contexts];
hlyr = new Neuron[hiddens];
olyr = new Neuron[outputs];

rate = 0.1f; // learning rate
momentum = 0.9f;
float w centre = 0f, w range = 0.5f; // initial weights

// 1. create the input layer
for (int i=0; i<inputs; i++)

ilyr[i] = new InputNode(0, "I"+i);
ilyr[inputs] = new InputNode(1, "Bi"); // bias

// 2. create the context layer (will add inputs later)
for (int i=0; i<contexts; i++)

clyr[i] = new ContextNode(this, 0.5f, "C"+i);

// 3. create hidden layer & links from input/context
for (int i=0; i<hiddens; i++) {

Link[ ] inLinks = new Link[inputs+contexts+1];
for (int j=0; j<inputs; j++)

inLinks[j] = new Link(ilyr[j], true, w centre, w range, rnd);
for (int j=0; j<contexts; j++)

inLinks[inputs+j] = new Link(clyr[j], true, w centre, w range, rnd);
inLinks[inputs+contexts] =

new Link(ilyr[inputs], true, w centre, w range, rnd); // bias
hlyr[i] = new Neuron(inLinks, this, 2, 0.5f, "H"+i);
}

// 4. add backlinks from hidden to context
for (int i=0; i<contexts; i++)

clyr[i].setInput( new Link(hlyr[i], false, 5f, 0f) );

// 5. create output layer
for (int i=0; i<outputs; i++) {

Link[ ] inLinks = new Link[hiddens+1];
for (int j=0; j<hiddens; j++)

inLinks[j] = new Link(hlyr[j], true, w centre, w range, rnd);
inLinks[hiddens] =

new Link(ilyr[inputs], true, w centre, w range, rnd); // bias
olyr[i] = new Neuron(inLinks, this, 3, 0.5f, "O"+i);
}
}

// Randomize weights of all links
public void randomizeWeights(float mean, float range) {

LinkEnum e = new LinkEnum();
while (e.hasMoreElements())
((Link) e.nextElement()).randomizeWeight(mean, range, rnd);

}

// functions for accessing input/output values
public void setIn(int node, float value) { ilyr[node].set(value); }
public float getIn(int node) { return ilyr[node].act(); }
public float getOut(int node) { return olyr[node].act(); }

/* A class to represent the activation function – really
just a wrapper around two float->float methods.
(XXX should this be an interface? ) */

public abstract class Activation {
abstract float f(float x); // the activation function
abstract float dfdx(float x); // its first derivative
// XXX change the name of dfdx to something that’s not a lie
}

/* Our standard (logistic) activation function */
private class Sigmoid extends Activation {

float f(float x) {
float fx;
fx = (float) (1/(1 + java.lang.Math.exp(−x)));
if (Float.isNaN(fx)) throw new Error("Aaagh! NaN! "+x+"\n");
return fx;
}
/* NB: returns slope at given f(x) (y value). So it’s not really

df/dx. So sue me. */
float dfdx(float x)
{ return x*(1−x); }
}

Activation act = new Sigmoid();

// Forward-propagate the current input values
public void think() {

// order of activation will be: hidden, context, output
// (so *initial* activations only matter for context nodes)
for (int i=0; i<hlyr.length; i++) hlyr[i].recalc();
for (int i=0; i<clyr.length; i++) clyr[i].recalc();
for (int i=0; i<olyr.length; i++) olyr[i].recalc();
}

/* Run a backprop against given (correct) output values.
Again, it’s assumed the inputs have already been set. */

public void train(float[ ] desired) {

think();

// compute sumSqError

sumSqError = 0;
for (int i=0; i<olyr.length; i++) {

float e = (desired[i] − olyr[i].act());
sumSqError += e*e;
}

// calculate deltas (deltata?)

for (int i=0; i<olyr.length; i++) {
olyr[i].delta = (desired[i] − olyr[i].act()) *

act.dfdx(olyr[i].act());
}

for (int i=0; i<hlyr.length; i++) {
hlyr[i].delta = 0;
for (int j=0; j<hlyr[i].outputs.length; j++)

if (hlyr[i].outputs[j].trainable)
hlyr[i].delta +=

hlyr[i].outputs[j].weight *
hlyr[i].outputs[j].output.delta();

hlyr[i].delta *= act.dfdx(hlyr[i].act());
}

calcInputWeights(olyr);
calcInputWeights(hlyr);
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}

/* Apply (possibly accumulated) weight changes; resetDeltas()
should be called after this method. */

public void changeWeights() {
LinkEnum e = new LinkEnum(true);

// shouldn’t make any difference which way we go actually
while (e.hasMoreElements()) {

Link l = (Link) e.nextElement();
l.dw = l.wacc + l.dw * momentum;
l.weight += rate * l.dw;
}
}

// Reset accumulated weight changes to zero
public void resetDeltas() {

for (int i=0; i<olyr.length; i++)
for (int j=0; j<olyr[i].inputs.length; j++)

olyr[i].inputs[j].wacc = 0;
for (int i=0; i<hlyr.length; i++)

for (int j=0; j<hlyr[i].inputs.length; j++)
hlyr[i].inputs[j].wacc = 0;

}

/* calculate changes in input weights & add them to the
wacc (weight-accumulator) fields. */

private void calcInputWeights(Neuron[ ] ns) {
for (int i=0; i<ns.length; i++)

for (int j=0; j<ns[i].inputs.length; j++) {
Link ln = ns[i].inputs[j];
ln.wacc += ln.output.delta() * ln.input.act();
}

}

// overwrite the cached activations of the context nodes with
// the given value. Handy for starting new training patterns
public void flushContext(float x)
{ for (int i=0; i<clyr.length; i++) clyr[i].act = x; }

// return sum of squared errors computed during backprop
public float sumSqError() { return sumSqError; }

// read weights in from a file (does not check for bad input)
public void loadWeights(File f) {

try {
StreamTokenizer input = new StreamTokenizer
(new BufferedReader (new InputStreamReader
(new FileInputStream(f))));

LinkEnum enum = new LinkEnum();
while (enum.hasMoreElements()) {

while (input.nextToken() != input.TT NUMBER);
((Link) enum.nextElement()).weight = (float) input.nval;
}
}
catch (IOException e) { throw new Error(e.getMessage()); }
}

/* Return number of trainable weights in the network. Handy
if creating an array for getAllWeights(). */

public int numWeights() {
return (ilyr.length+clyr.length)*hlyr.length // ->hidden
+ (1 + hlyr.length) * olyr.length ; // ->output

}

/* Output all weights as a single array of floats
order: hidden, output (input wts of each) */

public float[ ] getAllWeights() {
float[ ] w = new float[numWeights()];
int i=0;
LinkEnum e = new LinkEnum();
while (e.hasMoreElements())

w[i++] = ((Link) e.nextElement()).weight;
return w;
}

/* Set all weights from the supplied array of floats.
Order same as getAllWeights(). */

public void setAllWeights(float w[ ]) {

if (w.length != numWeights())
throw new Error("Wrong number of weights.");

int i=0;
LinkEnum e = new LinkEnum();
while (e.hasMoreElements())
((Link) e.nextElement()).weight = w[i++];

}

/* Enumerate over all (trainable) links in network. It can
be relied upon always to enumerate in the same order. */

public class LinkEnum implements Enumeration {
private Neuron[ ] layer;
private int i,j;
private Link next;
private boolean nextIsValid;
private boolean backwards; // i.e. output then hidden

public LinkEnum() { this(false); }

public LinkEnum(boolean backwards) {
this.backwards = backwards;
layer = backwards ? olyr : hlyr;
i = j = 0;
nextIsValid = true;
cacheNext();
}

private void cacheNext() {
if (!nextIsValid) throw new Error
("LinkEnum fell off the end. This really shouldn’t happen.");

if (j>=layer[i].inputs.length) {j=0; i++;}
if (i>=layer.length) {

i = 0;
if (backwards) layer = (layer==olyr) ? hlyr : null;
else layer = (layer==hlyr) ? olyr : null;
}
if (layer==null)

nextIsValid = false;
else {

next = layer[i].inputs[j];
nextIsValid = true;
}
j++;
}

public boolean hasMoreElements() { return nextIsValid; }
public Object nextElement() {

if (!nextIsValid) throw new Error
("nextElement() called on empty link enumerator.");

Link r = next;
cacheNext();
return r;
}
}

// ============= Debugging routines below here

// Dump a line describing weights to given o/p stream
// (same order as dumpWeights, naturellement)
public void describeWeights(java.io.PrintStream out) {

for (int i=0; i<hlyr.length; i++)
for (int j=0; j<hlyr[i].inputs.length; j++)

out.print(hlyr[i].inputs[j].input.label()+hlyr[i].label()+" ");
for (int i=0; i<olyr.length; i++)

for (int j=0; j<olyr[i].inputs.length; j++)
out.print(olyr[i].inputs[j].input.label()+olyr[i].label()+" ");

out.println();
}

// Dump the weightings to the given output stream
public void dumpWeights(java.io.PrintStream out) {

dumpWeights(out, hlyr);
dumpWeights(out, olyr);
out.println();
}

public void dumpWeights(java.io.PrintStream out,
Neuron[ ] nodes) {

for (int i=0; i<nodes.length; i++)
for (int j=0; j<nodes[i].inputs.length; j++)

37



out.print(nodes[i].inputs[j].weight+" ");
}

// Dump the activations to the given output stream
public void dumpActs(java.io.PrintStream out) {

dumpActs(out, olyr, "Outputs: ");
dumpActs(out, hlyr, "Hiddens: ");
dumpActs(out, clyr, "Context: ");
dumpActs(out, ilyr, "Inputs : ");
}

public void dumpActs(java.io.PrintStream out, Axon[ ] ns,
String label) {

out.print(label);
for (int i=0; i<ns.length; i++) out.print(ns[i].act()+" ");
out.println();
}

}

B.2.4 Fitness

package neurotic;

import neurotic.*;

public interface Fitness {
void initEnviros(int n); // create test environments for the net
float score(Net net, int env);

// evaluate fitness in specified environment
}

B.2.5 Population

package neurotic;

import java.util.*;
import java.io.*;
import java.text.*;

public class Population {

Net net;
Fitness fitfunc; // the fitness function
public float[ ][ ] weights; // weights of networks
public float[ ] fitness; // fitnesses of individuals
Random rnd;
int envs; // number of environments for determining fitness
float muteRate; // mutation rate
int currGen; // current generation
public int fittest, leastFit; // most and least fit individuals

public Population(Net net, Fitness fitfunc, int size,
float mean, float range, float muteRate,
int envs) {

this.net = net;
this.fitfunc = fitfunc;
this.muteRate = muteRate;
rnd = new Random();
this.envs = envs;
weights = new float[size][ ];
this.fitness = new float[size];
randomizePopulation(size, mean, range);
}

// load weights from input stream instead of initialising randomly
// file format: size muteRate currGen net.numWeights weights
public Population(Net net, Fitness fitfunc, int envs,

Reader r) {
this.net = net;

this.fitfunc = fitfunc;
rnd = new Random();
this.envs = envs;
try {

StreamTokenizer in = new StreamTokenizer(r);
in.nextToken(); int size = (int) in.nval;
this.fitness = new float[size];
in.nextToken(); muteRate = (float) in.nval;
in.nextToken(); currGen = (int) in.nval;
in.nextToken(); int numWts = (int) in.nval;
if (numWts != net.numWeights())

throw new Error("Population: error reading input file: "+
"wrong number of weights for this network.");

weights = new float[size][ ];
for (int i=0; i<size; i++) {

weights[i] = new float[numWts];
for (int j=0; j<numWts; j++) {

in.nextToken();
weights[i][j] = (float) in.nval;
}
}
}
catch (IOException e) { throw new Error(e.getMessage()); }

}

// save weights to output stream
public void save(Writer w) {

DecimalFormat d = new DecimalFormat("0.##########");
try {

w.write(weights.length + " " + muteRate + " " +
currGen + " " + net.numWeights() + "\n");

for (int i=0; i<weights.length; i++) {
for (int j=0; j<net.numWeights(); j++) {

w.write(d.format(weights[i][j]) + " ");
}
w.write("\n");
}
}
catch (IOException e) { throw new Error(e.getMessage()); }
}

public int popSize() { return weights.length; }
public int getCurrGen() { return currGen; }

public void randomizePopulation(int size, float mean, float range) {
for (int i=0; i<size; i++) {

net.randomizeWeights(mean, range);
weights[i] = net.getAllWeights();
}
currGen = 0;
}

float measureFitness(int i) {
float total = 0;
// System.err.println(i);
net.setAllWeights(weights[i]);
net.flushContext(0.5f);
for (int j=0; j<envs; j++) {

total += fitfunc.score(net, j);
}
return total;
}

// randomly select two candidates, let them compete
// in the prediefined environments, and replace the
// loser by a mutation of the winner
void tournamentSelect() {

int a = rnd.nextInt(popSize());
int b = rnd.nextInt(popSize()−1); if (b>=a) b++;
int winner = fitness[a] > fitness[b] ? a : b;
int loser = (a==winner) ? b : a;
mutate(weights[winner],weights[loser]);
fitness[loser] = measureFitness(loser);
}

// find individuals with least and greatest fitness
public void recalcStats() {

fittest = leastFit = −1;
float max = Float.NEGATIVE INFINITY;
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float min = Float.POSITIVE INFINITY;
for (int i=0; i<popSize(); i++) {

System.err.println("> " + i + " : " + fitness[i]);
if (fitness[i]>max) {fittest=i; max=fitness[i];}
if (fitness[i]<min) {leastFit=i; min=fitness[i];}
}
if (fittest==−1) throw new Error

("All "+popSize()+" fitnesses "+
"are Float.NEGATIVE_INFINITY.");

if (leastFit==−1) throw new Error
("All "+popSize()+" fitnesses "+
"are Float.POSITIVE_INFINITY.");

}

public float[ ] fittest() {
return weights[fittest];
}

// progress evolution by n generations
public void evolve(int n) {

for (int i=0; i<n; i++) {
fitfunc.initEnviros(envs);
for (int j=0; j<popSize(); j++) fitness[j] = measureFitness(j);
for (int j=0; j<popSize(); j++) tournamentSelect();

}
currGen += n;
recalcStats();
}

public void evolve() { evolve(1); }

// returns a mutation of the given float array
float[ ] mutate(float[ ] in, float range) {

float[ ] out = (float[ ]) in.clone();
for (int i=0; i<out.length; i++)

out[i] += (rnd.nextFloat() − 0.5f) * range;
return out;
}

// overwrites ‘out’ with a mutation of ‘in’
void mutate(float[ ] in, float[ ] out) {

for (int i=0; i<out.length; i++)
out[i] = in[i] + (rnd.nextFloat() − 0.5f) * muteRate;

}

}

B.3 testsuite package

B.3.1 XorBP

// XorBP: learn the XOR function by backpropagation

package testsuite;

import neurotic.*;
import java.io.*;

public class XorBP {

static java.util.Random rnd = new java.util.Random();

public static void main(String[ ] argv) {
Net net = new Net(2,2,1,false);
final float[ ][ ] trainingSet =
{{0,0, 0},
{0,1, 1},
{1,0, 1},
{1,1, 0}};

net.rate = 1.0f;
net.momentum = 0.8f;
float[ ] target = new float[1];

int k = 0;
do {

for (int i=0; i<trainingSet.length; i++) {
net.resetDeltas();
net.setIn(0,trainingSet[i][0]);
net.setIn(1,trainingSet[i][1]);
target[0] = trainingSet[i][2];
net.train(target);
net.changeWeights();
}
k++;
} while (net.sumSqError() > 0.001f);

System.out.println(k + " passes through training set.");
for (int i=0; i<trainingSet.length; i++) {

net.setIn(0,trainingSet[i][0]);
net.setIn(1,trainingSet[i][1]);
net.think();
System.out.println(trainingSet[i][0] + " XOR " +

trainingSet[i][1] + " = " +

net.getOut(0));
}

}
}

B.3.2 BPparrot

// Parrot: try to learn to repeat previous input by backpropagation

package testsuite;

import neurotic.*;
import java.io.*;

public class BPparrot {

static java.util.Random rnd = new java.util.Random();

public static void main(String[ ] argv) {
Net net = new Net(1,2,1,true);

/* Initial weights hand-calculated. Good performance is
given by the set {8,0,0,-4,0,8,0,-4,0,8,-4}
so I start it fairly close to this and let backprop
do the rest. */

net.setAllWeights(new float[ ] {5,−1,1,−5,1,6,−1,−3,0,6,−2});
boolean curr, prev = false;
float[ ] target = new float[1];

net.rate = 0.5f;
net.momentum = 0.5f;

System.out.println("Performance before training:\n");
test(net);

int k;
for (k=0; k<800; k++) {

net.resetDeltas();
curr = rnd.nextBoolean();
net.setIn(0, curr ? 1 : 0);
target[0] = prev ? 1 : 0;
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net.train(target);
prev = curr;
net.dumpWeights(System.err);
net.changeWeights();
}

System.out.println("\nAfter " + k + " backprop passes\n");
test(net);

}

static void test(Net net) {
StringBuffer ins, outs;
boolean curr, prev = false;
ins = new StringBuffer("Input ");
outs = new StringBuffer("Output ");
for (int i=0; i<60; i++) {

curr = rnd.nextBoolean();
net.setIn(0, curr ? 1 : 0);
net.think();
ins.append(curr ? "*" : ".");
if (net.getOut(0) < 0.2) outs.append(".");
else if (net.getOut(0) < 0.8) outs.append("?");
else outs.append("*");
prev = curr;
}
System.out.println(ins);
System.out.println(outs);
// net.dumpWeights(System.err);
}

}
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